[1] |
HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
|
[2] |
RUMGAY H, ARNOLD M, FERLAY J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77(6): 1598-1606.
doi: 10.1016/j.jhep.2022.08.021
pmid: 36208844
|
[3] |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
[4] |
VOGEL A, MEYER T, SAPISOCHIN G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362.
doi: 10.1016/S0140-6736(22)01200-4
pmid: 36084663
|
[5] |
RENZULLI M, BRACCISCHI L, DERRICO A, et al. State-of-the-art review on the correlations between pathological and magnetic resonance features of cirrhotic nodules[J]. Histol Histopathol, 2022, 37(12): 1151-1165.
|
[6] |
YOKOO T, MASAKI N, PARIKH N D, et al. Multicenter validation of abbreviated MRI for detecting early-stage hepatocellular carcinoma[J]. Radiology, 2023, 307(2): e220917.
|
[7] |
BRÖKER M E E, TAIMR P, DE VRIES M, et al. Performance of contrast-enhanced sonography versus MRI with a liver-specific contrast agent for diagnosis of hepatocellular adenoma and focal nodular hyperplasia[J]. AJR Am J Roentgenol, 2020, 214(1): 81-89.
|
[8] |
RELA M, RAO S N, PATIL R R. Performance analysis of liver tumor classification using machine learning algorithms[J]. Int J Adv Tec Engin Explor, 2022, 9(86): 143-154.
|
[9] |
LI D, HUO L, WAN M Y, et al. Application of radiomics based on new support vector machine in the classification of hepatic nodules[J]. Chinese J Magn Reson, 2022, 39(3): 278-290.
|
|
李笛, 霍雷, 万梦云, 等. 基于新型支持向量LIDI机的影像组学在肝脏结节分类中的应用[J]. 波谱学杂志, 2022, 39(3): 278-290.
doi: 10.11938/cjmr20212916
|
[10] |
XING Y H, HUANG Z J, HOU Y H. Application of enhanced CT-based radiomics in differentiating small hepatocellular carcinoma from hepatic dysplastic nodules[J]. Chinese Journal of CT and MRI, 2023, 21(7): 107-109.
|
|
邢艳虎, 黄忠江, 侯跃宏. 基于增强CT影像组学鉴别小肝癌与肝不典型增生结节的应用研究[J]. 中国CT和MRI杂志, 2023, 21(7): 107-109.
|
[11] |
SAHA ROY S, ROY S, MUKHERJEE P, et al. An automated liver tumour segmentation and classification model by deep learning based approaches[J]. Comput Methods Biomech Biomed Engin, 2023, 11(3): 638-650.
|
[12] |
CHENG N, REN Y, ZHOU J, et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images[J]. Gastroenterology, 2022, 162(7): 1948-1961.e7.
doi: 10.1053/j.gastro.2022.02.025
pmid: 35202643
|
[13] |
TRIVIZAKIS E, MANIKIS G C, NIKIFORAKI K, et al. Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to MRI liver tumor differentiation[J]. IEEE J Biomed Health Inform, 2018, 23(3): 923-930.
|
[14] |
ZHANG X, JIA N, WANG Y. Multi-input dense convolutional network for classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Biomed Signal Proces, 2023, 80: 104226.
|
[15] |
ZHOU J, WANG W, LEI B, et al. Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study[J]. Front Oncol, 2021, 10: 581210.
|
[16] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[17] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
|
[18] |
ABDULSAHIB FI, AL-KHATEEB B, KÓCZY LT, et al. A transfer learning approach for the classification of liver cancer[J]. J Intell Syst, 2023, 32(1): 1-14.
|
[19] |
LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 11976-11986.
|
[20] |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
|
[21] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
|
[22] |
TRIPATHI A, SINGH T, NAIR R R, et al. Improving early detection and classification of lung diseases with innovative MobileNetV2 framework[J]. IEEE Access, 2024: 116202-116217.
|
[23] |
WANG H, QI Q, SUN W, et al. Classification of skin lesions with generative adversarial networks and improved MobileNetV2[J]. Int J Imaging Syst Technol, 2023, 33(5): 1561-1576.
|
[24] |
XU L, MOHAMMADI M. Brain tumor diagnosis from MRI based on Mobilenetv2 optimized by contracted fox optimization algorithm[J]. Heliyon, 2023, 10(1): e23866.
|
[25] |
WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11534-11542.
|
[26] |
TU C, LIU W, JIANG W, et al. Hyperspectral image classification based on residual dense and dilated convolution[J]. Infrared Phys Techn, 2023, 131: 104706.
|
[27] |
DAUBECHIES I, DEVORE R, FOUCART S, et al. Nonlinear approximation and (deep) ReLU networks[J]. Constr Approx, 2022, 55(1): 127-172.
|
[28] |
ZHAO L, WANG N, ZHU X, et al. Establishment and validation of an artificial intelligence-based model for real-time detection and classification of colorectal adenoma[J]. Sci Rep, 2024, 14(1): 10750.
doi: 10.1038/s41598-024-61342-6
pmid: 38729988
|
[29] |
XU J, LI Z, DU B, et al. Reluplex made more practical: Leaky ReLU[C]// 2020 IEEE Symposium on Computers and communications (ISCC). IEEE, 2020: 1-7.
|
[30] |
GARCEA F, SERRA A, LAMBERTI F, et al. Data augmentation for medical imaging: A systematic literature review[J]. Comput Biol Med, 2023, 152: 106391.
|
[31] |
CARTER J V, PAN J, RAI S N, et al. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves[J]. Surgery, 2016, 159(6): 1638-1645.
|
[32] |
TIAN H, WU J, BIAN Y, et al. Classification of pancreatic cystic tumors based on DenseNet and transfer learning[J]. Chinese J Magn Reson, 2023, 40(3): 270-279.
|
|
田慧, 武杰, 边云, 等. 基于DenseNet结合迁移学习的胰腺囊性肿瘤分类方法[J]. 波谱学杂志, 2023, 40(3): 270-279.
doi: 10.11938/cjmr20223047
|