波谱学杂志

• •    

融合注意力机制和空洞卷积的3D MobileNetV2 在肝结节分类中的应用

孙灏芸,王丽嘉   

  1. 上海理工大学 健康科学与工程学院,上海 200093

  • 收稿日期:2024-08-12 修回日期:2024-11-13 出版日期:2024-11-13 在线发表日期:2024-11-13
  • 通讯作者: 王丽嘉 E-mail:lijiawangmri@163.com

Fusing Attention Mechanism and Dilated Convolution 3D MobileNetV2 for Classification of Hepatic Nodules

SUN Haoyun, WANG Lijia#br#   

  1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 
  • Received:2024-08-12 Revised:2024-11-13 Published:2024-11-13 Online:2024-11-13
  • Contact: WANG Lijia E-mail:lijiawangmri@163.com

摘要: 我国肝癌的发病率和死亡率都不容乐观,早诊断、早治疗成为改变这一现状的迫切手段.因此,本文提出一种融合注意力机制和空洞卷积的3D ELD_MobileNetV2肝结节分类模型,用于腹部动态增强磁共振图像四分类.首先,将二维网络结构扩展为三维,避免对磁共振图像进行特征提取时出现空间特征损失的现象;其次,基于局部跨通道交互策略,设计了融合局部特征和全局特征的高效通道注意力机制,将其嵌入到MobileNetV2的瓶颈结构中,增强网络对关键特征的提取能力;然后,在深度卷积中引入三维空洞结构,提高卷积核的感受野;同时,使用Leaky ReLU6激活函数替换原始激活函数,提升模型鲁棒性.该模型在120名患者中(肝炎、硬化结节、异型增生、肝细胞癌各30例)进行了测试和验证.实验结果表明,所提出的模型相较于原始MobileNetV2,准确率提高了8.34%.与AlexNet、VggNet16、ResNet50、ConvNeXt等网络相比,3D ELD_MobileNetV2表现最佳,准确率为79.17%,F1分数(F1-Score)为0.688、0.750、0.848、0.872,微平均曲线下面积(AUC)为0.954,宏平均AUC为0.948.该研究所提出的模型能够较好对不同时期的肝结节进行分类,有望为肝癌早期诊断提供帮助.

关键词: 3D MobileNetV2, 高效通道注意力, 空洞卷积, 肝结节分类, 动态增强磁共振成像

Abstract: The morbidity and mortality of liver cancer in China are not optimistic. Early diagnosis and treatment have become the urgent means to change this situation. Therefore, a fusion of attention mechanism and dilated convolution 3D ELD_MobileNetV2 hepatic nodules classification model was proposed to classify abdominal dynamic enhanced magnetic resonance images. Firstly, the two-dimensional network structure was extended to three dimensions to avoid the loss of spatial information during feature extraction of magnetic resonance imaging (MRI); Secondly, based on the local cross-channel interaction strategy, an efficient channel attention mechanism combining local features and global features was embedded in the bottleneck structure of MobileNetV2 network to enhance the key feature extraction capability. Then, 3D dilated structure was introduced into depthwise convolution to improve the receptive field of the convolution kernel; Meanwhile, Leaky ReLU6 activation function was used to replace the original activation function to improve the robustness of the model. The model was tested and validated in 120 patients (30 cases each of hepatitis, cirrhotic nodules, dysplastic nodules, and hepatocellular carcinoma), and the experimental results show that the accuracy of the proposed model was improved by 8.34% compared with the original MobileNetV2.Compared with other networks such as AlexNet,VggNet16,ResNet50, ConvNeXt, 3D ELD_MobileNetV2 shows the best performance, with the accuracy of 79.17%, F1-Score of 0.688, 0.750, 0.848, 0.872, and micro-average AUC of 0.954, and macro-average AUC of 0.948. The model proposed in this study can better classify liver nodules in different periods, and is expected to provide help for the early diagnosis of liver cancer.

Key words: 3D MobileNetV2, efficient channel attention, dilated convolution, hepatic nodules classification, DCE-MRI

中图分类号: