波谱学杂志 ›› 2024, Vol. 41 ›› Issue (1): 1-8.doi: 10.11938/cjmr20233069
王欢1,陶志清2,3,姜国胜1,张许3,王冠3(),禾立春2,3(),刘买利3
收稿日期:
2023-05-16
出版日期:
2024-03-05
在线发表日期:
2023-06-30
通讯作者:
Tel: 86-18602761433, E-mail: 作者简介:
†共同第一作者.
基金资助:
WANG Huan1,TAO Zhiqing2,3,JIANG Guosheng1,ZHANG Xu3,WANG Guan3(),HE Lichun2,3(),LIU Maili3
Received:
2023-05-16
Published:
2024-03-05
Online:
2023-06-30
Contact:
Tel: 86-18602761433, E-mail: 摘要:
HdeA是一种定位于细菌周质的分子伴侣,在维持蛋白质稳态中起着重要的作用.以往对HdeA的研究主要是在体外条件下进行,限制了人们对HdeA在天然环境下发挥作用机制的理解.细菌外膜囊泡是细菌自发分泌到胞外环境的外膜囊泡,其内容物与周质环境相似.本研究将HdeA富集到细菌外膜囊泡(OMVs)中,通过核磁共振波谱研究HdeA在OMVs中的构象变化.结果表明,HdeA在其原位环境中表现出酸依赖性的构象变化.在低pH条件下HdeA主要通过S15、W16、T17、S27、T32、E36、G54、T57、C66、Q71、F74及D83等残基启动其分子伴侣功能.此外本研究也为原位研究其它周质分子伴侣的功能提供了新方法.
中图分类号:
王欢, 陶志清, 姜国胜, 张许, 王冠, 禾立春, 刘买利. HdeA在细菌外膜囊泡环境下的原位NMR研究[J]. 波谱学杂志, 2024, 41(1): 1-8.
WANG Huan, TAO Zhiqing, JIANG Guosheng, ZHANG Xu, WANG Guan, HE Lichun, LIU Maili. In situ Investigation of HdeA in Bacterial Outer Membrane Vesicles Using NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 1-8.
[1] |
CHRISTOPH W, ANDREAS P. Protein folding in the periplasm of Escherichia coli[J]. Mol Microbiol, 1994, 12: 685-692.
doi: 10.1111/mmi.1994.12.issue-5 |
[2] |
HONG W Z, WU Y E, FU X M, et al. Chaperone-dependent mechanisms for acid resistance in enteric bacteria[J]. Trends Microbiol, 2012, 20(7): 328-335.
doi: 10.1016/j.tim.2012.03.001 pmid: 22459131 |
[3] |
YU X C, HU Y F, DING J, et al. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone[J]. J Biol Chem, 2019, 294(9): 3192-3206.
doi: 10.1074/jbc.RA118.006398 |
[4] |
GARRISON M A, CROWHURST K A. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation[J]. Protein Sci, 2014, 23(2): 167-178.
doi: 10.1002/pro.2402 pmid: 24375557 |
[5] | ZHAN J H, HU Q, ZHU Q J, et al. Track the conformational change of unlabeled yeast cytochrome c in cell homogenate using NMR[J]. Chinese J Magn Reson, 2023, 40(1): 22-29. |
占建华, 胡琴, 朱勤俊, 等. 基于磁共振的胞浆中无标记酵母细胞色素c构象变化追踪[J]. 波谱学杂志, 2023, 40(1): 22-29. | |
[6] |
XING C Y, CHENGFENG Y, JIENV D, et al. Characterizations of the interactions between Escherichia coli periplasmic chaperone HdeA and its native substrates during acid stress[J]. Biochemistry, 2017, 56 (43): 5748-5757
doi: 10.1021/acs.biochem.7b00724 |
[7] |
SALMON L, STULL F, SAYLE S, et al. The mechanism of HdeA unfolding and chaperone activation[J]. J Mol Biol, 2018, 430(1): 33-40.
doi: S0022-2836(17)30540-5 pmid: 29138002 |
[8] |
ZHAI Z N, WU Q, ZHENG W W, et al. Roles of structural plasticity in chaperone HdeA activity are revealed by 19F NMR[J]. Chem Sci, 2016, 7: 2222.
doi: 10.1039/C5SC04297F |
[9] |
WANG G, YU G J, GAO D W. Protein conformational exchanges modulated by the environment of outer membrane vesicles[J]. J Phys Chem Lett, 2023, 14 (11): 2772-2777.
doi: 10.1021/acs.jpclett.3c00152 pmid: 36897994 |
[10] |
THOMA J, MANIOGLU S, KALBERMATTER D, et al. Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies[J]. Comm Biol, 2018, 1: 23.
doi: 10.1038/s42003-018-0027-5 |
[11] |
NIKAIDO H, VAARA M. Molecular basis of bacterial outer membrane permeability[J]. Microbiol Rev, 1985, 49(1): 1-32.
doi: 10.1128/mr.49.1.1-32.1985 pmid: 2580220 |
[12] |
SCHIRMER T. General and specific porins from bacterial outer membranes[J]. J Struct Biol, 1998, 121(2): 101-109.
pmid: 9615433 |
[13] |
KOEBNIK R, LOCHER K P, VAN GELDER P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Mol Microbiol, 2000, 37(2): 239-253.
doi: 10.1046/j.1365-2958.2000.01983.x pmid: 10931321 |
[14] |
JOHANNES T, BJÖRN M B. High-resolution in situ NMR spectroscopy of bacterial envelope proteins in outer membrane vesicles[J]. Biochemistry, 2020, 59(17): 1656-1660.
doi: 10.1021/acs.biochem.9b01123 |
[15] |
VRANKEN W F, BOUCHER W, STEVENS T J, et al. The CCPN data model for NMR spectroscopy: development of a software pipeline[J]. Proteins, 2005, 59(4): 687-696.
doi: 10.1002/prot.v59:4 |
[16] | HOEKSTRA D, VAN DER LAAN J W, DE LEIJ L, et al. Release of outer membrane fragments from normally growing Escherichia coli[J]. Biochim Biophys Acta, 1976, 455(3): 889-899. |
[17] | MUG-OPSTELTEN D, WITHOLT B. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli[J]. Biochim Biophys Acta, 1978, 508(2): 287-295. |
[18] |
KESTY N C, KUEHN M J. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles[J]. J Biol Chem, 2004, 279(3): 2069-2076.
doi: 10.1074/jbc.M307628200 |
[19] |
HAURAT M F, ADUSE-OPOKU J, RANGARAJAN M, et al. Selective sorting of cargo proteins into bacterial membrane vesicles[J]. J Biol Chem, 2011, 286(2): 1269-1276.
doi: 10.1074/jbc.M110.185744 pmid: 21056982 |
[20] | BONNINGTON K E, KUEHN M J. Protein selection and export via outer membrane vesicles[J]. Biochim Biophys Acta, 2014, 1843(8): 1612-1619. |
[21] |
SONG X, LV T, CHEN J, et al. Characterization of residue specific protein folding and unfolding dynamics in cells[J]. J Am Chem Soc, 2019, 141(29): 11363-11366.
doi: 10.1021/jacs.9b04435 pmid: 31305080 |
[22] |
TAKAOKA Y, KIOI Y, MORITO A, et al. Quantitative comparison of protein dynamics in live cells and in vitro by in-cell 19F NMR[J]. Chem Comm, 2013, 49(27): 2801-2803.
doi: 10.1039/c3cc39205h |
[23] |
WILLIAMSON M P. Using chemical shift perturbation to characterize ligand binding[J]. Prog Nucl Magn Reson Spectrosc, 2013, 73: 1-16.
doi: 10.1016/j.pnmrs.2013.02.001 |
[1] | 王子文, 辛家祥, 魏达秀, 姚叶锋. 不同耦合构型多自旋体系单重态制备效率研究[J]. 波谱学杂志, 2024, 41(1): 67-76. |
[2] | 付方跃, 郭清乾, 冯晓宇, 徐佳玉, 姚泽坤, 胡涛, 杨晓冬, 常严. 基于小型化原子磁力计的零场NMR波谱仪搭建与测试[J]. 波谱学杂志, 2024, 41(1): 87-98. |
[3] | 徐真顺, 袁小涵, 黄子珩, 邵成伟, 武杰, 边云. 基于深度学习的胰腺黏液性和浆液性囊性肿瘤的多源特征分类模型[J]. 波谱学杂志, 2024, 41(1): 19-29. |
[4] | 刘颖, 林羚, 袁斌华, 章浩伟. MRI梯度波形发生器研究进展[J]. 波谱学杂志, 2024, 41(1): 99-115. |
[5] | 徐肖杰, 陈延安, 李旭飞, 张云才, 张勇, 詹冬凯, 潘婷. 海博麦布结构确证[J]. 波谱学杂志, 2024, 41(1): 43-55. |
[6] | 陈雷, 刘红兵, 刘惠丽, 王立英. 基于模拟退火优化的定量重聚INEPT方法[J]. 波谱学杂志, 2024, 41(1): 30-42. |
[7] | 陈阳, 周萌, 李勇, 杨海军. 固体核磁共振样品制备系统的自主研制[J]. 波谱学杂志, 2024, 41(1): 77-86. |
[8] | 周敏雄, 戚轩, 杜兵, 齐东, 王海杰, 杨光, 蔡文梅, 刘孟潇, 张会婷, 严序, 聂生东, 何永胜. b值范围对6种体部扩散模型在前列腺应用的影响评估[J]. 波谱学杂志, 2024, 41(1): 9-18. |
[9] | 马卉芳, 童悦, 王荣繁, 谢建伟. 达罗他胺中间体合成中杂质的发现和结构表征[J]. 波谱学杂志, 2024, 41(1): 56-66. |
[10] | 李正喆 郭亮 任旭虎. 基于数值优化方法的Halbach磁体无源匀场方法研究[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 郭旭 王晨旭 张欣 常严 崔峰 郭清乾 胡涛 杨晓冬. 基于新一代脑磁图的语义视听单试次检测[J]. 波谱学杂志, 0, (): 0-0. |
[12] | 杨黎明, 王远军. 扩散张量图像去噪算法研究进展[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 王慧, 王甜甜, 王丽嘉. 基于心脏磁共振电影图像的压缩激励残差U形网络左心肌分割[J]. 波谱学杂志, 2023, 40(4): 435-447. |
[14] | 赖嘉雯, 汪宇玲, 蔡晓宇, 周丽华. 基于CNN-SVM的多维度信息融合半月板撕裂分类方法[J]. 波谱学杂志, 2023, 40(4): 423-434. |
[15] | 任宏晋, 马岩, 肖亮. 基于生成对抗网络的膝关节模型构建与局部比吸收率估计[J]. 波谱学杂志, 2023, 40(4): 410-422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||