[1] |
BASSER P J, MATTIELLO J, LEBIHAN D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66(1): 259-267.
doi: 10.1016/S0006-3495(94)80775-1
pmid: 8130344
|
[2] |
TOURNIER J D. Diffusion MRI in the brain - theory and concepts[J]. Prog Nucl Magn Reson Spectrosc, 2019, 112-113: 1-16.
|
[3] |
ALEXANDER D C, DYRBY T B, NILSSON M, et al. Imaging brain microstructure with diffusion MRI: practicality and applications[J]. NMR Biomed, 2019, 32(4): e3841.
doi: 10.1002/nbm.v32.4
|
[4] |
MALAYERI A A, EL KHOULI R H, ZAHEER A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up[J]. Radiographics, 2011, 31(6): 1773-91.
doi: 10.1148/rg.316115515
pmid: 21997994
|
[5] |
LE BIHAN D, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505.
doi: 10.1148/radiology.168.2.3393671
pmid: 3393671
|
[6] |
JENSEN J H, HELPERN J A, Ramani A. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440.
doi: 10.1002/mrm.20508
pmid: 15906300
|
[7] |
BENNETT K M, SCHMAINDA K M, Bennett R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003, 50(4): 727-734.
doi: 10.1002/mrm.10581
pmid: 14523958
|
[8] |
CHEN J, GUO Y, GUO Y, et al. Preoperative assessment of microvascular invasion of hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging with a fractional order calculus model: A pilot study[J]. Magn Reson Imaging, 2023, 95: 110-117.
doi: 10.1016/j.mri.2021.09.003
|
[9] |
SUI Y, WANG H, LIU G, et al. Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model[J]. Radiology, 2015, 277(2): 489-96.
doi: 10.1148/radiol.2015142156
|
[10] |
METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics reports, 2000, 339(1): 1-77.
doi: 10.1016/S0370-1573(00)00070-3
|
[11] |
KARAMAN M M, SUI Y, WANG H, et al. Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values[J]. Magn Reson Med, 2016, 76(4): 1149-57.
doi: 10.1002/mrm.v76.4
|
[12] |
KARAMAN M M, ZHANG J, XIE K L, et al. Quartile histogram assessment of glioma malignancy using high b-value diffusion MRI with a continuous-time random-walk model[J]. NMR Biomed, 2021, 34(4): e4485.
doi: 10.1002/nbm.v34.4
|
[13] |
QIN Y, TANG C, HU Q, et al. Assessment of prognostic factors and molecular subtypes of breast cancer with a continuous-time random-walk mr diffusion model: Using whole tumor histogram analysis[J]. J Magn Reson Imaging, 2023, 58(1): 93-105.
doi: 10.1002/jmri.v58.1
|
[14] |
SCHMID-TANNWALD C, OTO A, REISER M F, et al. Diffusion-weighted MRI of the abdomen: current value in clinical routine[J]. J Magn Reson Imaging, 2013, 37(1): 35-47.
doi: 10.1002/jmri.v37.1
|
[15] |
TANG L, ZHOU X J. Diffusion MRI of cancer: From low to high b-values[J]. J Magn Reson Imaging, 2019, 49(1): 23-40.
doi: 10.1002/jmri.v49.1
|
[16] |
GAO A, ZHANG H, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J]. Radiology, 2022, 302(3): 652-661.
doi: 10.1148/radiol.210820
|
[17] |
SEO N, CHUNG Y E, PARK Y N, et al. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2018, 28(7): 2812-2822.
doi: 10.1007/s00330-017-5292-z
pmid: 29404771
|
[18] |
LIU Y F, ZOU Z Y, CAI L M, et al. Characterizing sensorimotor-related area abnormalities in amyotrophic lateral sclerosis: an intravoxel incoherent motion magnetic resonance imaging study[J]. Acad Radiol, 2022, 2(3): 141-146.
|
[19] |
GUO R, YANG S H, LU F, et al. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model[J]. Quant Imaging Med Surg, 2019, 9(9): 1566-1578.
doi: 10.21037/qims
|
[20] |
SUN K, CHEN X, CHAI W, et al. Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors[J]. Radiology, 2015, 277(1): 46-55.
doi: 10.1148/radiol.15141625
pmid: 25938679
|
[21] |
WANG W T, YANG L, YANG Z X, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging[J]. Radiology, 2018, 286(2): 571-580.
doi: 10.1148/radiol.2017170515
|
[22] |
MIN X, FENG Z, WANG L, et al. Multi-model analysis of diffusion-weighted imaging of normal testes at 3.0 T: preliminary findings[J]. Acad Radiol, 2018, 25(4): 445-452.
doi: S1076-6332(17)30482-8
pmid: 29331362
|
[23] |
ZHOU M X, ZHANG H T, WANG Y D, et al. Evaluation of the influence of data acquisition schemes on multiple neural diffusion models[J]. Chinese J Magn Reson, 2022, 39(2): 220-229.
|
|
周敏雄, 张会婷, 王一达, 等. 数据采集方案对神经扩散模型影响的评估[J]. 波谱学杂志, 2022, 39(2): 220-229.
|