1 |
郑荣寿, 孙可欣, 张思维, 等2015年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2019,41(1):19-28.
|
|
ZHENG R S, SUN K X, ZHANG S W, et alAnalysis on the prevalence of malignant tumors in China in 2015[J].Chinese Journal of Oncology,2019,41(1):19-28.
|
2 |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et alRadiomics: extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.
doi: 10.1016/j.ejca.2011.11.036
|
3 |
XUE L Y, JIANG Z Y, FU T T, et alTransfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis[J].Eur Radiol,2020,30(5):2973-2983.
doi: 10.1007/s00330-019-06595-w
|
4 |
WU J J, LIU A L, CUI J J, et alRadiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images[J].BMC Med Imaging,2019,19(1):23.
doi: 10.1186/s12880-019-0321-9
|
5 |
BAEK J, SWANSON T A, TUTHILL T, et al. Support vector machine (SVM) based liver classification: fibrosis, steatosis, and inflammation[C]// International Ultrasonics Symposium. Las Vegas, NV. USA: IEEE, 2020: 1-4.
|
6 |
ANJU KRISHNA M, EDWIN D, HARIHARAN S. Classification of liver tumor using modified SFTA based multi class support vector machine[C]// International Conference on Current Trends in Computer, Electrical, Electronics and Communication, Mysore, India. USA: IEEE, 2017, 854-859.
|
7 |
LI H Z, GUO S, ZHAO H R, et alAnnual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm[J].Energies,2012,5(11):4430-4445.
doi: 10.3390/en5114430
|
8 |
苗续芝, 陈伟, 毕方明, 等基于改进FOA-SVM的矿井火灾图像识别[J].计算机工程,2019,45(4):267-274.
|
|
MIAO X Z, CHEN W, BI F M, et allMine fire image recognition based on improved FOA-SVM[J].Computer Engineering,2019,45(4):267-274.
|
9 |
CHU D L, HE Q, MAO X HRolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine[J].J Vibroeng,2016,18(1):151-164.
|
10 |
VAPNIK V, CHAPELLE OBounds on error expectation for support vector machines[J].Neural Comput,2000,12(9):2013-2036.
doi: 10.1162/089976600300015042
|
11 |
WU X H, ZUO W M, LIN L, et alF-SVM: Combination of feature transformation and SVM learning via convex relaxation[J].IEEE T Neur Net Lear,2018,29(11):5185-5199.
doi: 10.1109/TNNLS.2018.2791507
|
12 |
CORTES C, VAPNIK V J M LSupport-vector networks[J].Mach Learn,1995,20(3):273-297.
|
13 |
石钰阳, 何平, 刘奕, 等基于PSO-SVM模型的多区域多参数MRI脑胶质瘤MGMT分类[J].科学技术创新,2021,17,15-18.
|
|
SHI Y Y, HE P, LIU Y, et alMulti-region and multi-parameter classification of MRI MGMT gliomas based on PSO-SVM model[J].Scientific and Technological Innovation,2021,17,15-18.
|
14 |
XU Y Y, YIN W TA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[J].SIAM J Imaging Sci,2013,6(3):1758-1789.
doi: 10.1137/120887795
|
15 |
CHEN H L, YANG B, WANG S J, et alTowards an optimal support vector machine classifier using a parallel particle swarm optimization strategy[J].Appl Math Comput,2014,239,180-197.
|
16 |
THARWAT A, HASSANIEN, ABOUL EChaotic antlion algorithm for parameter optimization of support vector machine[J].Appl Intell,2018,48(3):670-686.
doi: 10.1007/s10489-017-0994-0
|
17 |
单黎黎, 张宏军, 王杰, 等一种改进粒子群算法的混合核ε-SVM参数优化及应用[J].计算机应用研究,2013,30(6):1636-1639.
|
|
SHAN L L, ZHANG H J, WANG J, et alParameters optimization and implementation of mixed kernels r epsilon-SVM based on improved PSO algorithm[J].Application Research of Computers,2013,30(6):1636-1639.
|
18 |
PAN W TA new fruit fly optimization algorithm: Taking the financial distress model as an example[J].Knowledge-Based Systems,2012,26,69-74.
doi: 10.1016/j.knosys.2011.07.001
|
19 |
王林, 吕盛祥, 曾宇容果蝇优化算法研究综述[J].控制与决策,2017,32(7):1153-1162.
|
|
WANG L, LV S X, ZENG Y RLiterature survey of fruit fly optimization algorithm[J].Control and Decision,2017,32(7):1153-1162.
|
20 |
张水平, 王丽娜果蝇优化算法的进展研究分析[J].计算机工程与应,2021,57(6):22-29.
|
|
ZHANG S P, WANG L NResearch and analysis on progress of fruit fly optimization algorithm[J].Computer Engineering and Applications,2021,57(6):22-29.
|
21 |
YANG X S, SUASH D. Cuckoo search via Lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India. USA: IEEE, 2009: 210-214.
|
22 |
SHEN L M, CHEN H L, YU Z, et alEvolving support vector machines using fruit fly optimization for medical data classification[J].Knowl-Based Syst,2016,96,61-75.
|
23 |
GU Q H, CHANG Y X, LI X H, et alA novel F-SVM based on FOA for improving SVM performance[J].Expert Syst Appl,2021,165,113713.
|
24 |
ZHANG Y H, WEN J H, WANG X B, et alSemi-supervised learning combining co-training with active learning[J].Expert Syst Appl,2014,41(5):2372-2378.
|
25 |
HARALICK R M, SHANMUGAM K, DINSTEIN ITextural features for image classification[J].IEEE T Syst Man Cy-S,1973,SMC-3(6):610-621.
|
26 |
GILLIES R, KINAHAN P, HRICAK H J RRadiomics: Images are more than pictures, they are data[J].Radiology,2016,278,563-577.
|
27 |
ZOU H, HASTIE TRegularization and variable selection via the elastic net[J].J Roy Stat Soc B,2005,67(5):768.
|
28 |
魏志宏, 闫士举, 韩宝三, 等基于多输出的3D卷积神经网络诊断阿尔兹海默病[J].波谱学杂志,2021,38(1):92-100.
|
|
WEI Z H, YAN S J, HAN B S, et alDiagnosis of Alzheimer's disease based on multi-output three-dimensional convolutional neural network[J].Chinese J Magn Reson,2021,38(1):92-100.
|
29 |
刘颖, 陈静聪, 胡小洋, 等基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J].波谱学杂志,2021,38(1):58-68.
|
|
LIU Y, CHEN J C, HU X Y, et alClassification and localization of meningioma and acoustic neuroma in cerebellopontine angle based on mask RCNN[J].Chinese J Magn Reson,2021,38(1):58-68.
|
30 |
谭章禄, 陈孝慈改进的分类器分类性能评价指标研究[J].统计与信息论坛,2020,35(9):3-8.
|
|
TAN Z L, CHEN X CStudy on evaluation index of improved classifier classification performance[J].Statistics & Information Foroum,2020,35(9):3-8.
|
31 |
秦锋, 杨波, 程泽凯分类器性能评价标准研究[J].计算机技术与发展,2006,16(10):85-88.
|
|
QIN F, YANG B, CHENG Z KResearch on measure criteria in evaluating classification performance[J].Computer Technology and Development,2006,16(10):85-88.
|
32 |
KIM T K, LEE K H, JANG H J, et alAnalysis of gadobenate dimeglumine-enhanced MR findings for characterizing small (1-2-cm) hepatic nodules in patients at high risk for hepatocellular carcinoma[J].Radiology,2011,259(3):730-738.
|