波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 308-317.doi: 10.11938/cjmr20150213
魏淑怡,潘韻如,曾天生,陈金榜*
收稿日期:
2015-03-02
修回日期:
2015-05-08
出版日期:
2015-06-05
发布日期:
2015-06-05
作者简介:
*通讯联系人:陈金榜,电话:+886-2-27899162, E-mail: bmchinp@ibms.sinica.tw.
基金资助:
WEI Shu-yi,PAN Yun-ru,TSENG Tien-sheng,CHEN Chin-pan*
Received:
2015-03-02
Revised:
2015-05-08
Online:
2015-06-05
Published:
2015-06-05
About author:
*Corresponding author: CHEN Chin-pan, Tel: +886-2-27899162, E-mail: bmchinp@ibms.sinica.tw.
Supported by:
摘要:
亚碲酸盐是碲的一含氧阴离子,其对微生物具高度毒性.在许多的致病菌内已经鉴定出数个抗亚碲酸盐基因(terZABCDEF).之前,作者解出抗亚碲酸盐蛋白质TerD液体核磁共振结构并指出在细菌内TerD 可能是一钙离子传感器.TerZ 与TerD 在序列上有40%相同性,其包括了一额外的9 氨基酸片段L36-N44,并且显示出非常弱的钙离子亲合性.有趣的是,少了额外片段的TerZdel 拥有与TerD 可比较的钙离子亲合性.根据化学位移指数及同源模拟结果,此额外片段为一无二级结构且延伸的loop,可能扰乱钙离子结合位置的构形,同时也阻碍了钙离子接近其结合位置,因此大大降低钙离子亲合性.
中图分类号:
魏淑怡, 潘韻如, 曾天生, 陈金榜. 克雷伯氏肺炎杆菌内抗亚碲酸盐蛋白质TerZ 延伸环降低对钙离子亲合性[J]. 波谱学杂志, 2015, 32(2): 308-317.
WEI Shu-yi, PAN Yun-ru, TSENG Tien-sheng, CHEN Chin-pan?. The Extended Loop Reduces Ca2+-Binding Affinity on the Tellurite Resistance Protein TerZ from Klebsiella penumoniae[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 308-317.
[1] Taylor D E. Bacterial tellurite resistance[J]. Trends Microbiol, 1999, 7(3): 111-115.[2] Chasteen T G, Fuentes D E, Tantalean J C, et al. Tellurite: history, oxidative stress, and molecular mechanisms of resistance[J]. FEMS Microbiol Rev, 2009, 33(4): 820-832.[3] Walter E G, Taylor D E. Plasmid-mediated resistance to tellurite: expressed and cryptic[J]. Plasmid, 1992, 27(1): 52-64.[4] Chen Y T, Chang H Y, Lai Y C, et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43[J]. Gene, 2004, 337: 189-198.[5] Whelan K F, Colleran E, Taylor D E. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478[J]. J Bacteriol, 1995, 177(17): 5 016-5 027.[6] Valkovicova L, Vavrova S M, Mravec J, et al. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster “ter” from pathogenic Escherichia coli[J]. Antonie Van Leeuwenhoek, 2013, 104(6): 899-911.[7] Anantharaman V, Iyer L M, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing[J]. Mol Biosyst, 2012, 8(12): 3 142-3 165. [8] Pan Y R, Lou Y C, Seven A B, et al. NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae[J]. J Mol Biol, 2011, 405(5): 1 188-1 201.[9] Pan Y R. Structure as a Guide to Function: NMR Studies on Tellurite Resistance Proteins from Klebsiella pneumoniae[D]. Hsinchu: Institute of Bioinformatics and Structural Biology, College of Life Science, “National Tsing Hua University”, 2011.[10] Wu K M, Li L H, Yan J J, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis[J]. J Bacteriol, 2009, 191(14): 4 492-4 501.[11] Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling[J]. Biophys J, 2000, 78(3): 1 606-1 619.[12] Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.[13] Johnson B A, Blevins R A. NMR View: A computer program for the visualization and analysis of NMR data[J]. J Biomol NMR, 1994, 4(5): 603-614.[14] Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Res, 2014, 42(W1): W252-W258.[15] Sali A, Blundell T L. Comparative protein modelling by satisfaction of spatial restraints[J]. J Mol Biol, 1993, 234(3): 779-815.[16] Morris A L, MacArthur M W, Hutchinson E G., et al. Stereochemical quality of protein structure coordinates[J]. Proteins, 1992, 12(4): 345-364.[17] Laskowski R A, Macarthur M W, Moss D S, et al. Procheck: a program to check the stereochemical quality of protein structures[J]. J Appl Cryst, 1993, 26(0), 283-291.[18] Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks[J]. J Biomol NMR, 2013, 56(3): 227-241. |
[1] | 朱泽华, 闫士举, 阮渊, 韩邦旻. 基于改进DRLSE模型的前列腺磁共振图像分割[J]. 波谱学杂志, 2020, 37(4): 447-455. |
[2] | 刘思, 安艳捧, 唐惠儒. 冷冻干燥对人类体液代谢组影响的NMR研究[J]. 波谱学杂志, 2020, 37(4): 484-489. |
[3] | 刘鹏, 钟玉敏, 王丽嘉. 基于密集多尺度U-net网络的电影心脏磁共振图像右心室自动分割[J]. 波谱学杂志, 2020, 37(4): 456-468. |
[4] | 李英俊, 杨鸿境, 刘季红, 靳焜, 林乐弟, 刘雪洁. 基于咔唑-三嗪并吲哚的N-酰腙衍生物的NMR数据归属[J]. 波谱学杂志, 2020, 37(4): 496-504. |
[5] | 周中高, 谢倩, 元洋洋, 李静, 路东亮, 陈正旺. 吡喃葡糖基氮杂环卡宾-钯(II)-吡啶配合物的NMR研究[J]. 波谱学杂志, 2020, 37(4): 505-514. |
[6] | 柯汉平, 蔡宏浩. 基于哈德曼编码的新型高分辨定域谱[J]. 波谱学杂志, 2020, 37(4): 524-532. |
[7] | 王婉婷, 苏适, 贾森, 梁栋, 王海峰. 基于虚拟线圈和卷积神经网络的多层同时激发图像重建[J]. 波谱学杂志, 2020, 37(4): 407-421. |
[8] | 雒媛, 朱凯然. 相位可控的核四极矩共振激励脉冲发生器设计[J]. 波谱学杂志, 2020, 37(4): 515-523. |
[9] | 吴明娣, 冯洁, 贾慧惠, 吴继志, 张欣, 常严, 杨晓冬, 盛茂. 儿童发育性髋关节脱位的磁共振形态学定量[J]. 波谱学杂志, 2020, 37(4): 434-446. |
[10] | 保秋连, 杨云汉, 魏可可, 罗建萍, 古捷, 鲁佳佳, 杨丽娟. 水溶性磷酸盐柱[5]芳烃与吖啶橙的络合行为[J]. 波谱学杂志, 2020, 37(4): 469-483. |
[11] | 程力维, 王璐璐, 钟凯. fMRI在经颅直流电刺激研究中的应用进展[J]. 波谱学杂志, 2020, 37(4): 533-546. |
[12] | 窦梦雨 赵奇 侯相林 刘雷 唐明兴 王英雄. 蒽加氢产物的结构指认和定量核磁共振分析[J]. 波谱学杂志, 0, (): 0-0. |
[13] | 温亮, 李春发. 等规聚丙烯成核剂的结构和构型分析[J]. 波谱学杂志, 2020, 37(3): 291-299. |
[14] | 徐鹏程, 肖亮. 多通道磁共振成像仪控制台数据传输模块设计[J]. 波谱学杂志, 2020, 37(3): 283-290. |
[15] | 詹嘉莹, 涂章仁, 杜晓凤, 袁斌, 郭迪, 屈小波. 基于低秩矩阵的非均匀采样NMR波谱重建进展[J]. 波谱学杂志, 2020, 37(3): 255-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||