波谱学杂志 ›› 2014, Vol. 31 ›› Issue (4): 449-464.doi: 10.11938/cjmr20140401

• 特邀综述 • 上一篇    下一篇

金刚石固态量子计算中的高分辨率成像

袁峰, 王鹏飞, 孔飞, 许祥坤, 石发展, 杜江峰*   

  1. 中国科学技术大学合肥微尺度物质科学国家实验室和近代物理系,安徽合肥 230026
  • 收稿日期:2014-04-02 修回日期:2014-10-30 出版日期:2014-12-05 发布日期:2014-12-05
  • 通讯作者: 杜江峰 E-mail:djf@ustc.edu.cn
  • 作者简介:杜江峰,1969 年6 月出生,2000 年于中国科学技术大学获理学博士学位.中国科学技术大学教授、博士生导师,教育部长江学者特聘教授,国家杰出青年科学基金获得者,首批国家万人计划“科技创新领军人才”入选者,新世纪百千万人才工程国家级人选,国家重大科学研究计划量子调控项目首席科学家.主要研究方向为基于自旋磁共振的量子调控、量子计算和量子模拟的实验研究. 袁峰(1988-),男,江西人,硕士研究生,从事金刚石固态量子计算中荧光收集效率和分辨率的研究. *通讯联系人:杜江峰,电话:0551-63600307,E-mail:djf@ustc.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(91021005).

Super-Resolution Imaging in Diamond Solid-State Quantum Computation

YUAN Feng,WANG Peng-fei,KONG Fei,XU Xiang-kun,SHI Fa-zhan,DU Jiang-feng*?   

  1. Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
  • Received:2014-04-02 Revised:2014-10-30 Online:2014-12-05 Published:2014-12-05
  • About author:*Corresponding author:DU Jiang-feng, Tel: 0551-63600307, E-mail: djf@ustc.edu.cn.
  • Supported by:

    国家自然科学基金资助项目(91021005).

摘要:

20 世纪90 年代中期,随着Shor 算法和Grover 算法的提出,量子计算领域得到广泛关注.金刚石固态NV 色心方案作为量子计算机热门物理实现方案之一,因其在室温下的超长相干时间和可精确操控等独特优势而备受青睐;此外,NV 色心还有望通过磁共振成像方式实现单核自旋探测.然而NV 色心固态量子计算的一种扩展方式受限于相邻NV 色心之间的磁偶极相互作用,要求两个NV 色心之间相距只有数十纳米.这一尺度远小于普通远场光学的分辨率,即光学衍射极限,采用传统的共聚焦方法已无法分辨.受激发射损耗(STED)和基态损耗(GSD)等超分辨成像技术能够突破光学衍射极限限制,达到纳米量级的分辨率;同时结合最新的金刚石表面微纳刻蚀技术,可实现NV 色心固态量子计算中不同色心的分辨和精确定位.该文从固态金刚石NV 色心体系和光学衍射等主要方面对利用STED 和GSD 高分辨成像技术提高传统共聚焦显微镜对NV 色心体系成像分辨率进行简要的介绍,并结合实例介绍一些最新的研究进展.

关键词: 磁共振成像(MRI), 光探测磁共振, 高分辨率成像, 量子计算, NV 色心

Abstract:

Quantum computation has been drawing more and more attentions, since the Shor's algorithm and Grover's algorithm are proposed in the middle 1990s. Among the systems being pursued for physically implementing a quantum computer, the diamond solid-state quantum computation, which use the electronic or nuclear spins of nitrogen-vacancy (NV) centers as qubits, is considered more favorable because it has a super long coherence time at room
temperature and precise manipulations for the system are readily available. In addition, NV centers may be used for single spin detection by magnetic resonance. For NV centers with a distance of tens of nanometers among them, the inter-center force will be strong enough to establish a quantum computer. However, the conventional confocal microscopy can only be used to resolve centers that are more than two hundred nanometers away from each other. Super-resolution microscopy techniques, such as stimulated emission depletion (STED) and ground state depletion (GSD), may provide a way to resolve NV centers with a resolution beyond the diffraction limit. In recent year, super-resolution microscopy has been used in combination with advanced surface processing technology for accurate positioning of NV centers in diamond. In this paper, we briefly summarize the super-resolution microscopy
techniques that have been used in diamond solid-state quantum computation, and reviewed the latest developments in the field.

Key words: magnetic resonance imaging, optically detected magnetic resonance, superresolution imaging, quantum computation, nitrogen-vacancy center

中图分类号: