[1] Hetzel R, Wuthrich K, Deisenhofer J, et al. Dynamics of aromatic amino-acid residues in globular conformation of basic pancreatic trypsin-inhibitor (Bpti). 2. semiempirical energy calculations[J]. Biophys Struct Mech, 1976, 2(2): 159-180.
[2] Wagner G, Demarco A, Wuthrich K. Dynamics of aromatic amino-acid residues in globular conformation of basic pancreatic trypsin-inhibitor (Bpti). 1. 1H NMR studies[J]. Biophys Struct Mech, 1976, 2(2): 139-158.
[3] Wuthrich K, Wagner G. Internal motion in globular proteins[J]. Trends Biochem Sci, 1978, 3(10): 227-230.
[4] Wagner G. Characterization of the distribution of internal motions in the basic pancreatic trypsin-inhibitor using a large number of internal NMR probes[J]. Q Rev Biophys, 1983, 16(1): 1-57.
[5] Burley S K, Petsko G A. Aromatic-aromatic interaction - a mechanism of protein-structure stabilization[J]. Science, 1985, 229(4 708): 23-28.
[6] Weiss M A, Karplus M, Sauer R T. 1H NMR aromatic spectrum of the operator binding domain of the lambda-repressor -resonance assignment with application to structure and dynamics[J]. Biochemistry, 1987, 26(3): 890-897.
[7] Weiss M A, Nguyen D T, Khait I, et al. Two-dimensional NMR and photo-cidnp studies of theinsulin monomer -assignment of aromatic resonances with application to protein folding, structure, and dynamics[J]. Biochemistry, 1989, 28(25): 9 855-9 873.
[8] Dougherty D A. Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp[J]. Science, 1996, 271(5 246): 163-168.
[9] Smith B O, Ito Y, Raine A, et al. An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types[J]. J Biomol NMR, 1996, 8(3): 360-368.
[10] Ma J C, Dougherty D A. The cation-pi interaction[J]. Chem Rev, 1997, 97(5): 1 303-1 324.
[11] Gallivan J P, Dougherty D A. Cation-pi interactions in structural biology[J]. Proc Nat Acad Sci US, 1999, 96(17): 9 459-9 464.
[12] Crowhurst K A, Forman-Kay J D. Aromatic and methyl NOES highlight hydrophobic clustering in the unfolded state of an SH3 domain[J]. Biochemistry, 2003, 42(29): 8 687-8 695.
[13] Meyer E A, Castellano R K, Diederich F. Interactions with aromatic rings in chemical and biological recognition[J]. Angew Chem Int Ed, 2003, 42(11): 1 210-1 250.
[14] Eletsky A, Atreya H S, Liu G H, et al. Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy[J]. J Am Chem Soc, 2005, 127(42): 14 578-14 579.
[15] Teilum K, Brath U, Lundstrom P, et al. Biosynthetic C-13 labeling of aromatic side chains in proteins for NMR relaxation measurements[J]. J Am Chem Soc, 2006, 128(8): 2 506-2 507.
[16] Mok K H, Kuhn L T, Goez M, et al. A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein[J]. Nature, 2007, 447(7 140): 106-109.
[17] Esfandiary R, Hunjan J S, Lushington G H, et al. Temperature dependent 2(nd) derivative absorbance spectroscopy of aromatic amino acids as a probe of protein dynamics[J]. Protein Science, 2009, 18(12): 2 603-2 614.
[18] Wiesler S C, Weinzierl R O, Buck M. An aromatic residue switch in enhancer-dependent bacterial RNA polymerase controls transcription intermediate complex activity[J]. Nucleic Acids Res, 2013, [Epub ahead of print, doi: 10.1093/nar/gkt271].
[19] Williams J K, Zhang Y, Schmidt-Rohr K, et al. pH-dependent conformation, dynamics and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid state NMR[J]. Biophys J, 2013, 104(8): 1 698-1 708.
[20] Wuthrich K. NMR of Proteins and Nucleic[M]. New York: Acids Wiley, 1986.
[21] Vuister G W, Kim S J, Wu C, et al. 2D and 3D NMR-study of phenylalanine residues in proteins by reverse isotopic labeling[J]. J Am Chem Soc, 1994, 116(20): 9 206-9 210.
[22] Kay L E, Gardner K H. Solution NMR spectroscopy beyond 25 kDa[J]. Curr Opin Struc Biol, 1997, 7(5): 722-731.
[23] Aghazadeh B, Zhu K, Kubiseski T J, et al. Structure and mutagenesis of the Dbl homology domain[J]. Nat Struct Biol, 1998, 5(12): 1 098-1 107.
[24] Gardner K H, Kay L E. The use of H-2, C-13, N-15 multidimensional NMR to study the structure and dynamics of proteins[J]. Annu Rev Bioph Biom, 1998, 27: 357-406.
[25] Clore G M, Starich M R, Bewley C A, et al. Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints[J]. J Am Chem Soc, 1999, 121(27): 6 513-6 514.
[26] Medek A, Olejniczak E T, Meadows R P, et al. An approach for high-throughput structure determination of proteins by NMR spectroscopy[J]. J Biomol NMR, 2000, 18(3): 229-238.
[27] Ab E, Pugh D J R, Kaptein R, et al. Direct use of unassigned resonances in NMR structure calculations with proxy residues[J]. J Am Chem Soc, 2006, 128(23): 7 566-7 571.
[28] Kainosho M, Torizawa T, Iwashita Y, et al. Optimal isotope labelling for NMR protein structure determinations[J]. Nature, 2006, 440(7 080): 52-57.
[29] Yamazaki T, Formankay J D, Kay L E. 2-Dimensional NMR experiments for correlating C-13-beta and H-1-delta/epsilon chemical-shifts of aromatic residues in C-13-labeled proteins via scalar couplings[J]. J Am Chem Soc, 1993, 115(23): 11 054-11 055.
[30] Grzesiek S, Bax A. Audio-frequency NMR in a nutating frame - application to the assignment of phenylalanine residues in isotopically enriched proteins[J]. J Am Chem Soc, 1995, 117(24): 6 527-6 531.
[31] Simorre J P, Zimmermann G R, Pardi A, et al. Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA[J]. J Biomol NMR, 1995, 6(4): 427-432.
[32] Carlomagno T, Maurer M, Sattler M, et al. PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C-alpha,C' transfer and C-beta, C-aromatic correlations[J]. J Biomol NMR, 1996, 8(2): 161-170.
[33] Zerbe O, Szyperski T, Ottiger M, et al. Three-dimensional H-1-TOCSY-relayed ct- C-13, H-1 - HMQC for aromatic spin system identification in uniformly C-13-labeled proteins[J]. J Biomol NMR, 1996, 7(2): 99-106.
[34] Whitehead B, Tessari M, Dux P, et al. A N-15-filtered 2D H-1 TOCSY experiment for assignment of aromatic ring resonances and selective identification of tyrosine ring resonances in proteins: Description and application to photoactive yellow protein[J]. J Biomol NMR, 1997, 9(3): 313-316.
[35] Prompers J J, Groenewegen A, Hilbers C W, et al. Two-dimensional NMR experiments for the assignment of aromatic side chains in C-13-labeled proteins[J]. J Magn Reson, 1998, 130(1): 68-75.
[36] Slupsky C M, Gentile L N, McIntosh L P. Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains[J]. Biochem Cell Biol, 1998, 76(2-3): 379-390.
[37] Sattler M, Schleucher J, Griesinger C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients[J]. Prog Nucl Mag Res Sp, 1999, 34(2): 93-158.
[38] Lohr F, Katsemi V, Betz M, et al. Sequence-specific assignment of histidine and tryptophan ring H-1, C-13 and N-15 resonances in C-13/N-15- and H-2/C-13/N-15-labelled proteins[J]. J Biomol NMR, 2002, 22(2): 153-164.
[39] Lohr F, Rogov V V, Shi M C, et al. Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues[J]. J Biomol NMR, 2005, 32(4): 309-328.
[40] Lohr F, Hansel R, Rogov V V, et al. Improved pulse sequences for sequence specific assignment of aromatic proton resonances in proteins[J]. J Biomol NMR, 2007, 37(3): 205-224.
[41] Rajesh S, Nietlispach D, Nakayama H, et al. A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp[J]. J Biomol NMR, 2003, 27(1): 81-86.
[42] Schlorb C, Ackermann K, Richter C, et al. Heterologous expression of hen egg white lysozyme and resonance assignment of tryptophan side chains in its non-native states[J]. J Biomol NMR, 2005, 33(2): 95-104.
[43] Ohki S Y, Kainosho M. Stable isotope labeling methods for protein NMR spectroscopy[J]. Prog Nucl Mag Res Sp, 2008, 53(4): 208-226.
[44] Ikeya T, Takeda M, Yoshida H, et al. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system[J]. J Biomol NMR, 2009, 44(4): 261-272.
[45] Takeda M, Ono A M, Terauchi T, et al. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination[J]. J Biomol NMR, 2010, 46(1): 45-49.
[46] Skalicky J J, Mills J L, Sharma S, et al. Aromatic ring-flipping in supercooled water: Implications for NMR-based structural biology of proteins[J]. J Am Chem Soc, 2001, 123(3): 388-397.
[47] Mills J L, Szyperski T. Protein dynamics in supercooled water: The search for slow motional modes[J]. J Biomol NMR, 2002, 23(1): 63-67.
[48] Seifert M H, Ksiazek D, Azim M K, et al. Slow exchange in the chromophore of a green fluorescent protein variant[J]. J Am Chem Soc, 2002, 124(27): 7 932-7 942.
[49] Rao D K, Bhuyan A K. Complexity of aromatic ring-flip motions in proteins: Y97 ring dynamics in cytochrome cobserved by cross-relaxation suppressed exchange NMR spectroscopy[J]. J Biomol NMR, 2007, 39(3): 187-196.
[50] Boyer J A, Lee A L. Monitoring aromatic picosecond to nanosecond dynamics in proteins via C-13 relaxation: Expanding perturbation mapping of the rigidifying core mutation, V54A, in Eglin C[J]. Biochemistry, 2008, 47(17): 4 876-4 886.
[51] Boyer J A, Clay C J, Luce K S, et al. Detection of native-state nonadditivity in double mutant cycles via hydrogen exchange[J]. J Am Chem Soc, 2010, 132(23): 8 010-8 019.
[52] Zhuravleva A, Orekhov V Y. Divided evolution: A scheme for suppression of line broadening induced by conformational exchange[J]. J Am Chem Soc, 2008, 130(11): 3 260-3 261.
[53] Henzler-Wildman K, Kern D. Dynamic personalities of proteins[J]. Nature, 2007, 450(7 172): 964-972.
[54] Henzler-Wildman K A, Lei M, Thai V, et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis[J]. Nature, 2007, 450(7 171): 913-927.
[55] Baldwin A J, Kay L E. NMR spectroscopy brings invisible protein states into focus[J]. Nat Chem Biol, 2009, 5(11): 808-814.
[56] Mittermaier A K, Kay L E. Observing biological dynamics at atomic resolution using NMR[J]. Trends Biochem Sci, 2009, 34(12): 601-611.
[57] Bernado P, Blackledge M. Structural biology proteins in dynamic equilibrium[J]. Nature, 2010, 468(7 327): 1 046-1 048.
[58] Villali J, Kern D. Choreographing an enzyme's dance[J]. Curr Opin Chem Biol, 2010, 14(5): 636-643.
[59] Eisenmesser E Z, Millet O, Labeikovsky W, et al. Intrinsic dynamics of an enzyme underlies catalysis[J]. Nature, 2005, 438(7 064): 117-121.
[60] Korzhnev D M, Salvatella X, Vendruscolo M, et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR[J]. Nature, 2004, 430(6 999): 586-590.
[61] Luz Z, Meiboom S. Nuclear Magnetic Resonance study of protolysis of trimethylammonium Ion in aqueous solution -order of reaction with respect to solvent[J]. J Chem Phys, 1963, 39(2): 366-370.
[62] Allerhand A, Gutowsky H S. Spin-echo NMR studies of chemical exchange .1. some general aspects[J]. J Chem Phys, 1964, 41(7): 2 115-2 126.
[63] Krishnan V V, Rance M. Influence of chemical-exchange among homonuclear spins in heteronuclear coherence-transfer experiments in liquids[J]. J Magn Reson Ser A, 1995, 116(1): 97-106.
[64] Li Y, Palmer A G, 3rd. Narrowing of protein NMR spectral lines broadened by chemical exchange[J]. J Am Chem Soc, 2010, 132(26): 8 856-8 857.
[65] Gullion T, Baker D B, Conradi M S. New, compensated Carr-Purcell sequences[J]. J Magn Reson, 1990, 89(3): 479-484.
[66] Ellett J D, Waugh J S. Chemical-shift concertina[J]. J Chem Phys, 1969, 51(7): 2 851.
[67] Mueller L, Legault P, Pardi A. Improved RNA structure determination by detection of NOE contacts to exchangebroadended amino protons[J]. J Am Chem Soc, 1995, 117(45): 11 043-11 048.
[68] Mulder F A A, Spronk C, Slijper M, et al. Improved HSQC experiments for the observation of exchange broadened signals[J]. J Biomol NMR, 1996, 8(2): 223-228.
[69] Davis A L, Keeler J, Laue E D, et al. Experiments for recording pure-sbsorption heteronuclear correlation spectra using pulsed field gradients[J]. J Magn Reson, 1992, 98(1): 207-216.
[70] Muhandiram D R, Farrow N A, Xu G Y, et al. A gradient C-13 NOESY-HSQC experiment for recording NOESY spectra of C-13-labeled proteins dissolved in H2O[J]. J Magn Reson Ser B, 1993, 102(3): 317-321.
[71] Kay L E, Xu G Y, Singer A U, et al. A gradient-enhanced HCCH TOCSY experiment for recording side-chain H-1 and C-13 correlations in H2O samples of proteins[J]. J Magn Reson Ser B, 1993, 101(3): 333-337.
[72] Delaglio F, Grzesiek S, Vuister G W, et al. Nmrpipe - a multidimensional spectral processing system based on Unix Pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.
[73] Johnson B A, Blevins R A. NMR view - a computer-program for the visualization and analysis of NMR data[J]. J Biomol NMR, 1994, 4(5): 603-614.
[74] Gronenborn A M, Filpula D R, Essig N Z, et al. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein-G[J]. Science, 1991, 253(5020): 657-661. |