张正逢1,2,杨俊1*
收稿日期:
2012-05-24
修回日期:
2012-06-19
出版日期:
2013-06-05
发布日期:
2013-06-05
作者简介:
张正逢(1985-),男,江西泰和人,博士研究生,主要从事蛋白质的固体核磁共振研究.
*通讯联系人:杨俊,电话:027-87199723,E-mail:yangjun@wipm.ac.cn.
基金资助:
国家自然科学基金资助项目(21075133).
ZHANG Zheng-feng1,2, YANG Jun1*
Received:
2012-05-24
Revised:
2012-06-19
Online:
2013-06-05
Published:
2013-06-05
About author:
张正逢(1985-),男,江西泰和人,博士研究生,主要从事蛋白质的固体核磁共振研究.
*通讯联系人:杨俊,电话:027-87199723,E-mail:yangjun@wipm.ac.cn.
Supported by:
国家自然科学基金资助项目(21075133).
摘要:
淀粉样蛋白纤维是一类纤维状的蛋白质聚集体,与多种蛋白质沉积疾病相关. 对淀粉样蛋白纤维结构的研究,有助于人们从分子水平上阐述其形成机理, 提供相关疾病预防或治疗的依据. 由于淀粉样蛋白纤维不可溶、非结晶,因此液体核磁共振和X-射线衍射等方法对这类体系的应用受限,而固体核磁共振被认为是研究这类体系最具前景的技术. 该综述介绍了固体核磁共振解析蛋白质结构的方法及其应用于淀粉样蛋白纤维体系的研究进展.
中图分类号:
张正逢1,2,杨俊1*. 固体核磁共振研究淀粉样蛋白纤维的进展[J]. 波谱学杂志.
ZHANG Zheng-feng1,2, YANG Jun1*. Solid-State NMR Studies on Amyloid Fibrils: Recent Progresses[J]. Chinese Journal of Magnetic Resonance.
[1]Sipe J D.Amyloidosis[J].Annu Rev Biochem,1992,947-975. [2] Chiti F,Dobson C M.Protein misfolding, functional amyloid, and human disease[J]. Annu Rev Biochem,2006,333-366. [3] Heise H.Solid-state NMR spectroscopy of amyloid proteins[J]. ChemBioChem, 2008, 9(2): 179-189. [4] Ye Chao-hui(叶朝辉). Magic angle spinning NMR spectroscopy(魔角旋转核磁共振波谱学)[J]. Chinese J Magn Reson(波谱学杂志),1984,1(4): 415-454. [5] Yu Zhi-wu(喻志武), Zheng An-min(郑安民),Wang Qiang(王强),et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: A review on recent progresses(固体核磁共振研究固体酸催化剂酸性进展)[J].Chinese J Magn Reson(波谱学杂志), 2010, 27(4): 485-515. [6] Andrew E R,Bradbury A,Eades R G.Nuclear magnetic resonance spectra from a crystal rotated at high speed[J].Nature,1958,182(4 650): 1 659-1 659. [7] Lowe I J.Free induction decays of rotating solids[J]. Phys Rev Lett,1959, 2(7): 285-287. [8] Bennett A E, Rienstra C M,Auger M,et al.Heteronuclear decoupling in rotating solids[J]. J Chem Phys,1995,103(16): 6 951-6 958. [9] Fung B M, Khitrin A K, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids[J].J Magn Reson,2000,142(1): 97-101. [10] Detken A,Hardy E H,Ernst M,et al.Simple and efficient decoupling in magic-angle spinning solid state NMR: the XiX scheme[J]. Chem Phys Lett,2002,356(3-4): 298-304. [11] Weingarth M, Tekely P,Bodenhausen G.Efficient heteronuclear decoupling by quenching rotary resonance in solid-state NMR[J]. Chem Phys Lett,2008, 466(4-6): 247-251. [12] Pines A,Gibby M G,Waugh J S.Proton-enhanced nmr of dilute spins in solids[J].J Chem Phys,1973,59(2): 569-590. [13] Schaefer J,Stejskal E O.C-13 nuclear magnetic-resonance of polymers spinning at magic angle[J].J Am Chem Soc,1976,98(4):1 031-1 032. [14] Hartmann S R,Hahn E L.Nuclear double resonance in rotating frame[J].Phys Rev,1962, 128(5): 2 042-2 053. [15] Schaefer J,Mckay R A,Stejskal E O.Double cross polarization NMR of solids[J].J Magn Reson,1979,34(2): 443-447. [16] Heise H,Hoyer W,Becker S,et al. Molecular-level secondary structure,polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR[J].Proc Natl Acad Sci USA,2005,102(44): 15 871-15 876. [17] Xuan Jin-song(宣劲松),Wang Jin-feng(王金凤).Novel isotope labeling strategies for protein solution NMR spectroscopy: A review(核磁共振研究中蛋白质样品的同位素标记策略)[J]. Chinese J Magn Reson(波谱学杂志),2008,25(3): 435-445. [18] Petkova A T,Ishii Y,Balbach J J,et al.A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR[J]. Proc Natl Acad Sci USA, 2002,99(26):16 742-16 747. [19] Abdine A,Verhoeven M A,Park K H,et al.Structural study of the membrane protein MscL using cell-free expression and solid-state NMR[J].J Magn Reson,2010,204(1): 155-159. [20] Becker J,Ferguson N,Flinders J,et al. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: Amyloid fibrils of human CA150.WW2[J]. ChemBioChem,2008, 9(12):1 946-1 952. [21] Debelouchina G T, Platt G W,Bayro M J,et al.Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies[J].J Am Chem Soc, 2010, 132(30): 10 414-10 423. [22] Helmus J J,Surewicz K,Apostol M I,et al.Intermolecular alignment in Y145stop human prion protein amyloid fibrils probed by solid-state NMR spectroscopy[J].J Am Chem Soc,2011, 133(35): 13 934-13 937. [23] Loquet A,Lv G,Giller K,et al.(13)C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies[J].J Am Chem Soc, 2011,133(13): 4 722-4 725. [24] Bennett A E,Ok J H,Griffin R G,et al. Chemical-shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange[J]. J Chem Phys,1992, 96(11): 8 624-8 627. [25] Verel R,Baldus M,Ernst M,et al.A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques[J].Chem Phys Lett,1998, 287(3-4): 421-428. [26] Hohwy M,Rienstra C M,Jaroniec C P,et al.Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy[J].J Chem Phys, 1999,110(16): 7 983-7 992. [27] Castellani F,Van Rossum B,Diehl A,et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy[J].Nature,2002,420(6 911): 98-102. [28] Takegoshi K,Nakamura S,Terao T.C-13,H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR[J]. Chem Phys Lett,2001,344(5-6): 631-637. [29] Baldus M,Petkova A T,Herzfeld J,et al.Cross polarization in the tilted frame: Assignment and spectral simplification in heteronuclear spin systems[J].Mol Phys,1998, 95(6): 1 197-1 207. [30] Gullion T, Schaefer J. Rotational-echo double-resonance NMR[J].J Magn Reson,1989, 81(1): 196-200. [31] Hing A W,Vega S,Schaefer J.Transferred-echo double-resonance NMR[J].J Magn Reson,1992, 96(1): 205-209. [32] Raleigh D P,Levitt M H,Griffin R G. Rotational resonance in solid-state NMR[J]. Chem Phys Lett,1988, 146(1-2): 71-76. [33] Tycko R,Dabbagh G.Measurement of nuclear magnetic dipole-dipole couplings in magic angle spinning NMR[J].Chem Phys Lett,1990,173(5-6): 461-465. [34] Nielsen N C, Bildsoe H, Jakobsen H J,et al.Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic angle spinning nuclear magnetic resonance[J].J Chem Phys,1994,101(3): 1 805-1 812. [35] Sun B Q, Costa P R, Kocisko D,et al. Internuclear distance measurements in solid-state nuclear magnetic resonance: Dipolar recoupling via rotor synchronized spin locking[J].J Chem Phys,1995,102(2): 702-707. [36] Lee Y K,Kurur N D,Helmle M,et al.Efficient dipolar recoupling in the NMR of rotating solids: A sevenfold symmetrical radiofrequency pulse sequence[J].Chem Phys Lett,1995, 242(3): 304-309. [37] Hohwy M,Jakobsen H J,Eden M,et al.Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence[J].J Chem Phys,1998,108(7): 2 686-2 694. [38] Rienstra C M,Hatcher M E,Mueller L J,et al.Efficient multispin homonuclear double-quantum recoupling for magic-angle spinning NMR: C-13/C-13 correlation spectroscopy of U-C-13-erythromycin A[J].J Am Chem Soc,1998,120(41): 10 602-10 612. [39] Costa P R, Sun B Q, Griffin R G. Rotational resonance tickling: Accurate internuclear distance measurement in solids[J].JAm Chem Soc,1997,119(44): 10 821-10 830. [40] Lansbury P T,Costa P R,Griffiths J M,et al.Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide[J]. Nat Struct Biol,1995, 2(11): 990-998. [41] Takegoshi K, Nomura K, Terao T. Rotational resonance in the tilted rotating-frame[J]. Chem Phys Lett,1995,232(5-6): 424-428. [42] Costa P R, Sun B Q, Griffin R G. Rotational resonance NMR: Separation of dipolar coupling and zero quantum relaxation[J].J Magn Reson,2003,164(1): 92-103. [43] Tycko R.Theory of Stochastic dipolar recoupling in solidstate nuclear magnetic resonance[J].J Phys Chem B,2008,112(19): 6 114-6 121. [44] Scholz I,Huber M,Manolikas T,et al.MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning[J].Chem Phys Lett,2008,460(1-3): 278-283. [45] Weingarth M,Demco D E,Bodenhausen G,et al.Improved magnetization transfer in solid-state NMR with fast magic angle spinning[J].Chem Phys Lett,2009,469(4-6):342-348. [46] Hou G J,Yan S,Sun S J,et al.Spin diffusion driven by R-symmetry sequences: Applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids[J]. J Am Chem Soc,2011,133(11): 3 943-3 953. [47] Hu B W,Lafon O,Trebosc J,et al.Broad-band homo-nuclear correlations assisted by H-1 irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS- frequencies[J].J Magn Reson,2011,212(2): 320-329. [48] Lange A,Luca S,Baldus M.Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids[J].J Am Chem Soc,2002,124(33):9 704-9 705. [49] Lange A,Seidel K,Verdier L,et al.Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination[J].J Am Chem Soc,2003,125(41): 12 640-12 648. [50] Linser R, Bardiaux B, Higman V,et al.Structure calculation from unambiguous long-range amide and methyl H-1/H-1 distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy[J].J Am Chem Soc,2011,133(15): 5 905-5 912. [51] Michal C A,Jelinski L W.REDOR 3D: Heteronuclear distance measurements in uniformly labeled and natural abundance solids[J].J Am Chem Soc,1997,119(38): 9 059-9 060. [52] Hong M,Griffin R G.Resonance assignments for solid peptides by dipolar-mediated C-13/N-15 correlation solid-state NMR[J].J Am Chem Soc,1998,120(28): 7 113-7 114. [53] Hong M. Resonance assignment of C-13/N-15 labeled solid proteins by two- and three- dimensional magic-angle-spinning NMR[J].J Biomol NMR,1999,15(1): 1-14. [54] Jaroniec C P,Filip C,Griffin R G.3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly C-13, N-15-labeled solids[J].J Am Chem Soc,2002,124(36): 10 728-10 742. [55] Lewandowski J R,De Paepe G, Griffin R G. Proton assisted insensitive nuclei cross polarization[J].J Am Chem Soc,2007, 29(4): 728-729. [56] De Paepe G, Lewandowski J R, Loquet A,et al. Proton assisted recoupling and protein structure determination[J].J Chem Phys,2008, 129(24): 245 101 [57] Spera S,Bax A.Empirical correlation between protein backbone conformation and C-alpha and C-beta C-13 nuclear magnetic resonance chemical shifts[J].J Am Chem Soc,1991,113(14): 5 490-5 492. [58] Wishart D S,Sykes B D,Richards F M.The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy[J].Biochem,1992, 31(6): 1 647-1 651. [59] Luca S, Filippov D V,Van Boom J H,et al.Secondary chemical shifts in immobilized peptides and proteins: A qualitative basis for structure refinement under Magic Angle Spinning[J].J Biomol NMR,2001,20(4): 325-331. [60] Cornilescu G,Delaglio F,Bax A.Protein backbone angle restraints from searching a database for chemical shift and sequence homology[J].J Biomol NMR,1999,13(3): 289-302. [61] Ishii Y,Terao T,Kainosho M.Relayed anisotropy correlation NMR: Determination of dihedral angles in solids[J].Chem Phys Lett,1996, 256(1-2): 133-140. [62] Schmidt-Rohr K.Torsion angle determination in solid C-13-labeled amino acids and peptides by separated-local-field double-quantum NMR[J].J Am Chem Soc,1996,118(32): 7 601-7 603. [63] Feng X,Lee Y K,Sandstrom D,et al.Direct determination of a molecular torsional angle by solid-state NMR[J].Chem Phys Lett,1996,257(3-4): 314-320. [64] Bower P V,Oyler N,Mehta M A,et al.Determination of torsion angles in proteins and peptides using solid state NMR[J].J Am Chem Soc,1999,121(36): 8 373-8 375. [65] Costa P R, Gross J D, Hong M,et al.Solid-state NMR measurement of Psi in peptides: a NCCN 2Q-heteronuclear local field experiment[J].Chem Phys Lett,1997, 280(1-2): 95-103. [66] Ladizhansky V,Veshtort M,Griffin R G.NMR determination of the torsion angle Psi in alpha-helical peptides and proteins: The HCCN dipolar correlation experiment[J].J Magn Reson,2002,154(2): 317-324. [67] Chan J C C,Tycko R.Solid-state NMR spectroscopy method for determination of the backbone torsion angle psi in peptides with isolated uniformly labeled residues[J].J Am Chem Soc,2003,125(39): 11 828-11 829. [68] Hong M,Gross J D,Hu W,et al.Determination of the peptide torsion angle phi by N-15 chemical shift and C-13(alpha)H-1(alpha) dipolar tensor correlation in solid-state MAS NMR[J].J Magn Reson,1998,135(1): 169-177. [69] Rienstra C M,Hohwy M,Mueller L J,et al.Determination of multiple torsion-angle constraints in U-C-13, N-15-labeled peptides: 3D H-1/N-15/C-13/H-1 dipolar chemical shift NMR spectroscopy in rotating solids[J].J Am Chem Soc,2002,124(40): 11 908-11 922. [70] Reif B,Hohwy M,Jaroniec C P,et al.NH-NH vector correlation in peptides by solidstate NMR[J].J Magn Reson,2000, 145(1): 132-141. [71] Kloepper K D.Solid-state nuclear magnetic resonance spectroscopy of alpha-synuclein fibrils[D].University of Illinois at Urbana-Champaign, 2008. [72] Antzutkin O N,Leapman R D,Balbach J J,et al. Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance[J].Biochem,2002,41(51): 15 436-15 450. [73] Balbach J J,Petkova A T,Oyler N A,et al. Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: Evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance[J].Biophys J,2002,83(2): 1 205-1 216. [74] Luhrs T,Ritter C,Adrian M,et al.3D structure of Alzheimer's amyloid-beta(1-42) fibrils[J].Proc Natl Acad Sci USA,2005,102(48): 17 342-17 347. [75] Bertini I,Gonnelli L,Luchinat C,et al.A new structural model of A beta(40) fibrils[J]. J Am Chem Soc,2011,133(40): 16 013-16 022. [76] Jaroniec C P,Macphee C E,Bajaj V S,et al.High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy[J].Proc Natl Acad Sci USA,2004,101(3): 711-716. [77] Blanco F J,Hess S,Pannell L K,et al.Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form[J].J Mol Biol,2001, 313(4): 845-859. [78] Havlin R H,Blanco F J,Tycko R.Constraints on protein structure in HIV-1 Rev and Rev-RNA supramolecular assemblies from two-dimensional solid state nuclear magnetic resonance[J]. Biochem,2007,46(11): 3 586-3 593. [79] Debelouchina G T,Platt G W,Bayro M J,et al.Intermolecular alignment in beta(2)microglobulin amyloid fibrils[J].J Am Chem Soc,2010,32(48): 17 077-17 079. [80] Macias M J,Gervais V,Civera C,et al.Structural analysis of WW domains and design of a WW prototype[J].Nat Struct Biol,2000,7(5): 375-379. [81] Kamihira M,Naito A,Tuzi S,et al.Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state C-13 NMR[J].Protein Sci,2000, 9(5): 867-877. [82] Kamihira M, Oshiro Y,Tuzi S,et al.Effect of electrostatic interaction on fibril formation of human calcitonin as studied by high resolution solid state C-13 NMR[J].J Biol Chem,2003,278(5): 2 859-2 865. [83] Naito A,Kamihira M,Inoue R,et al.Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed C-13 solid-state NMR spectroscopy[J].Magn Reson Chem,2004, 42(2): 247-257. [84] Lim K H,Nguyen T N,Damo S M,et al.Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L)[J]. Solid State Nucl Magn Reson, 2006, 29(1-3): 183-190. [85] Tycko R,Savtchenko R,Ostapchenko V G,et al. The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: Evidence from solid state nuclear magnetic resonance[J]. Biochem, 2010, 49(44): 9 488-9 497. [86] Shewmaker F,Wickner R B,Tycko R.Amyloid of the prion domain of Sup35p has an inregister parallel beta-sheet structure[J].Proc Natl Acad Sci USA,2006,103(52): 19 754-19 759. [87] Van Der Wel P C A,Lewandowski J R,Griffin R G. olid-state NMR study of amyloid- nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p[J]. J Am Chem Soc,2007,129(16):5 117-5 130. [88] Chan J C C,Oyler N A,Yau W M,et al. Parallel betasheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p[J].Biochem,2005,44(31): 10 669-10 680. [89] Baxa U,Wickner R B,Steven A C,et al. Characterization of beta-sheet structure in Ure2p(1-89) yeast prion fibrils by solid-state nuclear magnetic resonance[J]. Biochem, 2007, 46(45): 13 149-13 162. [90] Loquet A,Bousset L,Gardiennet C,et al.Prion fibrils of Ure2p assembled under-physiological conditions contain highly ordered, natively folded modules[J].J Mol Biol,2009,394(1): 108-118. [91] Engel A,Shewmaker F,Edskes H K,et al. Amyloid of the Candida albicans Ure2p prion domain is infectious and has an in-register parallel beta-sheet structure[J].Biochem,2011,50(27): 5 971-5 978. [92] Kryndushkin D S,Wickner R B,Tycko R.The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-beta structure: Evidence from solid-state NMR[J]. J Mol Biol,2011,409(2): 263-277. [93] Griffiths J M,Ashburn T T,Auger M,et al.Rotational resonance solid-state NMR elucidates a structural model of pancreatic amyloid[J].J Am Chem Soc,1995, 117(12): 3 539-3 546. [94] Jack E,Newsome M,Stockley P G,et al.The organization of aromatic side groups in an amyloid fibril probed by solid-state H-2 and F-19 NMR spectroscopy[J].J Am Chem Soc,2006, 128(25): 8 098-8 099. [95] Luca S,Yau W M,Leapman R,et al. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR[J].Biochem,2007,46(47): 13 505-13 522. [96] Madine J,Jack E,Stockley P G,et al.Structural insights into the polymorphism of amyloid-Like fibrils formed by region 20-29 of amylin revealed by solid-state NMR and X-ray fiber diffraction[J].J Am Chem Soc,2008,130(45): 14 990-15 001. [97] Ritter C,Maddelein M L,Siemer A B,et al.Correlation of structural elements and infectivity of the HET-s prion[J].Nature,2005,435(7 043): 844-848. [98] Van Melckebeke H,Wasmer C,Lange A,et al.Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy[J].J Am Chem Soc,2010, 132(39): 13 765-13 775. [99] Wasmer C,Lange A,Van Melckebeke H,et al.Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core[J].Science,2008,319(5 869): 1 523-1 526. [100] loepper K D,Woods W S,Winter K A,et al.Preparation of alpha-synuclein fibrils for solid-state NMR: Expression, purification,and incubation of wild-type and mutant forms [J]. Protein Expression Purif,2006, 48(1): 112-117. [101] Kloepper K D,Hartman K L,Ladror D T,et al.Solid-state NMR spectroscopy reveals that water is nonessential to the core structure of alpha-synuclein fibrils[J].JPhys Chem B, 2007,111(47): 13 353-13 356. [102] Wickner R B,Dyda F,Tycko R.Amyloid of Rnq1p, the basis of the PIN+ prion, has a parallel in-register beta-sheet structure[J].Proc Natl Acad Sci USA,2008,105(7): 2 403-2 408. [103] Ishii Y,Balbach J J,Tycko R.Measurement of dipole-coupled lineshapes in a manyspin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning[J].Chem Phys,2001,266(2-3): 231-236. [104] Blanco F J,Tycko R.Determination of polypeptide backbone dihedral angles in solid state NMR by double quantum C-13 chemical shift anisotropy measurements[J].J Magn Reson, 2001,149(1): 131-138. [105] Detken A,Hardy E H,Ernst M,et al.Methods for sequential resonance assignment in solid, uniformly C-13,N-15 labelled peptides: Quantification and application to antamanide[J]. J Biomol NMR,2001,20(3): 203-221. [106] Siemer A B,Ritter C,Ernst M,et al.High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation[J].Angew Chem Int Edit,2005,44(16): 2 441-2 444. [107] Kupce E,Schmidt P,Rance M,et al. Adiabatic mixing in the liquid state[J].J Magn Reson, 1998,135(2): 361-367. [108] Andersson P,Gsell B,Wipf B,et al.HMQC and HSQC experiments with water flip-back optimized for large proteins[J].J Biomol NMR,1998,11(3): 279-288. [109] Mori S,Abeygunawardana C,Johnson M O,et al.Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC)detection scheme that avoids water saturation[J].J Magn Reson Ser B,1995, 108(1): 94-98. [110] Hardy E H,Detken A,Meier B H.Fast-MAS total throughbond correlation spectroscopy using adiabatic pulses[J].J Magn Reson,2003,165(2): 208-218. [111] Siemer A B,Arnold A A,Ritter C,et al.Observation of highly flexible residues in amyloid fibrils of the HET-s prion[J].J Am Chem Soc,2006,128(40): 13 224-13 228. [112] Yang J,Tasayco M L,Polenova T.Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies[J].J Am Chem Soc,2008,130(17): 5 798-5 807. [113] Nieuwkoop A J,Rienstra C M.Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR spectroscopy[J].J Am Chem Soc,2010, 132(22): 7 570-7 571. [114] Scheidt H A,Morgado I,Rothemund S,et al.Solid-state NMR spectroscopic investigation of A beta protofibrils: Implication of a beta-sheet remodeling upon maturation into terminal amyloid fibrils[J].Angew Chem Int Edit,2011,50(12): 2 837-2 840. [115] Klein W L,Stine W B,Teplow D B.Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer's disease[J].Neurobiol Aging,2004, 25(5): 569-580. [116] Chimon S,Ishii Y.Capturing intermediate structures of Alzheimer's beta-amyloid,A beta(1-40),by solid-state NMR spectroscopy[J].J Am Chem Soc,2005,127(39):13 472-13 473. [117] Chimon S,Shaibat M A,Jones C R,et al.Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's beta-amyloid[J].Nat Struct Mol Biol, 2007,14(12): 1 157-1 164. [118] Benzinger T L S,Gregory D M,Burkoth T S,et al.Propagating structure of Alzheimer's beta-amyloid((10-35)) is parallel betasheet with residues in exact register[J]. Proc Natl Acad Sci USA,1998,95(23): 13 407-13 412. [119] Antzutkin O N,Balbach J J,Leapman R D,et al.Multiple quantum solid-state NMR indicates a parallel,not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils[J].Proc Natl Acad Sci USA,2000,97(24): 13 045-13 050. [120] Benzinger T L S,Gregory D M,Burkoth T S,et al.Two-dimensional structure of beta-amyloid(10-35) fibrils[J].Biochem,2000,39(12): 3 491-3 499. [121] Antzutkin O N,Balbach J J,Tycko R.Site-specific identification of non-beta-strand conformations in Alzheimer's beta-amyloid fibrils by solid-state NMR[J].Biophys J,2003, 84(5): 3 326-3 335. [122] Petkova A T,Buntkowsky G,Dyda F,et al.Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide[J].J Mol Biol, 2004,335(1): 247-260. [123] Petkova A T,Leapman R D,Guo Z H,et al.Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils[J].Science,2005,307(5 707): 262-265. [124] Paravastu A K,Petkova A T,Tycko R.Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide[J].Biophys J,2006,90(12): 4 618-4 629. [125] Paravastu A K,Leapman R D,Yau W M,et al.Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils[J].Proc Natl Acad Sci USA,2008,105(47): 18 349-18 354. [126] Kodali R,Williams A D,Chemuru S,et al.A beta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated[J].J Mol Biol, 2010,401(3): 503-517. [127] Harper J D,Lieber C M,Lansbury P T.Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein[J].Chem Biol, 1997,4(12): 951-959. [128] Goldsbury C S,Wirtz S,Muller S A,et al.Studies on the in vitro assembly of A beta 1-40: Implications for the search for A beta fibril formation inhibitors[J].J Struct Biol, 2000,130(2-3): 217-231. [129] Jimenez J L,Nettleton E J,Bouchard M,et al. The protofilament structure of insulin amyloid fibrils[J].Proc Natl Acad Sci USA,2002,99(14): 9 196-9 201. [130] Hilbich C,Kisterswoike B,Reed J,et al.Aggregation and secondary structure of synthetic amyloid beta-A4 peptides of Alzheimers-disease[J].J Mol Biol,1991,218(1): 149-163. [131] Halverson K,Fraser P E,Kirschner D A,et al.Molecular determinants of amyloid deposition in Alzheimers-disease: Conformational studies of synthetic beta-protein fragments[J].Biochem,1990,29(11): 2 639-2 644. [132] Hilbich C,Kisterswoike B,Reed J,et al.Substitutions of hydrophobic amino-acids reduce the amyloidogenicity of Alzheimer's-disease beta-A4 peptides[J].J Mol Biol,1992, 228(2): 460-473. [133] Harper J D,Wong S S,Lieber C M,et al.Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer's disease[J].Biochem,1999,38(28): 8 972-8 980. [134] Wu C,Lei H X,Duan Y.Formation of partially ordered oligomers of amyloidogenic hexapeptide (NFGAIL) in aqueous solution observed in molecular dynamics simulations[J]. Biophys J,2004,87(5): 3 000-3 009. [135] Van Melckebeke H,Schanda P,Gath J,et al.Probing water accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR[J].J Mol Biol,2011,405(3): 765-772. [136] Shewmaker F,Kryndushkin D,Chen B,et al.Two prion variants of sup35p have in-register parallel beta-sheet structures,independent of hydration[J].Biochem,2009,48(23): 5 074-5 082. [137] Sciarretta K L,Gordon D J,Petkova A T,et al.A beta 40-Lactam(D23/K28) models a conformation highly favorable for nucleation of amyloid[J].Biochem,2005,44(16): 6 003-6 014. [138] Paparcone R,Pires M A,Buehler M J.Mutations alter the geometry and mechanical properties of Alzheimer's A beta(1-40) amyloid fibrils[J].Biochem,2010,49(41): 8 967-8 977. |
[1] | 冉梦琳, 覃凌云, 唐淳, 董旭. 磷酸化调控泛素单体与Rad23A/Ubiquilin-1中泛素结合域互作的检测[J]. 波谱学杂志, 2019, 36(1): 15-22. |
[2] | 王丹, 刘乙祥, 寇新慧, 刘买利, 姜凌. 细菌反应调节蛋白RR468磷酸化和去磷酸化关键位点的NMR研究[J]. 波谱学杂志, 2017, 34(4): 397-407. |
[3] | 孙毅, 陈艳可, 李建平, 赵永祥, 杨俊. 固体核磁共振中膜蛋白双交叉极化效率与动力学参数相关的定量分析[J]. 波谱学杂志, 2017, 34(3): 257-265. |
[4] | 陈艳华, 张则婷, 白佳, 刘晓黎, 刘买利, 李从刚. PDI抑制α-synuclein纤维化聚集作用机制研究[J]. 波谱学杂志, 2017, 34(2): 131-136. |
[5] | 李双利, 朱勤俊, 刘买利, 杨运煌. 蛋白质分子核磁共振谱峰的特性及其化学位移归属[J]. 波谱学杂志, 2017, 34(2): 137-147. |
[6] | 李东北, 许帅, 喻志武. 固体核磁共振技术在骨基生物材料研究中的应用[J]. 波谱学杂志, 2017, 34(1): 115-129. |
[7] | 李华, Yuji O. KAMATARI, Ryo KITAHARA, Kazuyuki AKASAKA. 高压NMR在蛋白质结构和动力学研究中的应用[J]. 波谱学杂志, 2016, 33(1): 1-26. |
[8] | 戴晨晔, 张则婷, 刘买利, 李从刚. NMR在α-synuclein的结构及相互作用研究中的应用[J]. 波谱学杂志, 2016, 33(1): 153-167. |
[9] | 徐玮婧,刘清华,胡炳文*,陈群. 聚氧乙烯-六氟砷酸锂复合物不同结晶结构的13C谱归属[J]. 波谱学杂志, 2015, 32(3): 399-408. |
[10] | 胡蕴菲1,2,何鹏1,3,吴宇杰1,3,金长文1,2,3,4*. 枯草芽孢杆菌双精氨酸转运系统TatAy 蛋白的溶液结构[J]. 波谱学杂志, 2015, 32(2): 291-307. |
[11] | 魏淑怡,潘韻如,曾天生,陈金榜*. 克雷伯氏肺炎杆菌内抗亚碲酸盐蛋白质TerZ 延伸环降低对钙离子亲合性[J]. 波谱学杂志, 2015, 32(2): 308-317. |
[12] | KUMAR Sriramoju M 1,呂平江1,徐尚德1,2,3*. 以液体核磁共振波谱分析与帕金森氏病相关的I93M 突变对人类泛素碳端水解酶结构的影响[J]. 波谱学杂志, 2015, 32(2): 329-341. |
[13] | 郑人豪,吴振,黄柏绮,柯志正,丁尚武*. 优化初始脉冲增强多量子跃迁及卫星跃迁魔角旋转谱灵敏度[J]. 波谱学杂志, 2015, 32(2): 363-372. |
[14] | 罗 欢1,2,梁欣苗1,2,冯继文1,王立英1. 结晶型PEO8∶NaPF6聚电解质中晶区链段的运动[J]. 波谱学杂志, 2015, 32(1): 12-22. |
[15] | 刘 源,陈胜利,吴 强,陈铁红,孙平川. 固体NMR 研究PMMA 纳米复合材料结构与受限链运动[J]. 波谱学杂志, 2015, 32(1): 23-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||