[1] Lauterbur P C. Image formation by induced local interaction: examples employing nuclear magnetic resonance[J]. Nature, 1973, 242: 190-191.
[2] Damadian R, Minkoff L, Goldsmith M, et al. Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal[J]. Science, 1976, 194: 1 430-1 432.
[3] Buxton R. Introduction to functional magnetic resonance Imaging: Principles and Techniques[M]. Cambridge University Press, 2002.
[4] Blümich B. NMR Imaging of Materials[M]. Oxford: Clarendon Press, 2000.
[5] Callaghan P T. Principles of Nuclear Magnetic Resonance Microscopy[M]. Oxford: Clarendon Press, 1991.
[6] Liang Z P, Lauterbur P C. Principles of magnetic resonance maging, A signal processing perspective[M]. New York: Spie Op-tical Engineering Press, 2000.
[7] Zhu Donglin(俎栋林). Magnetic Resonamce Imaging(核磁共振成像学)[M]. Beijing(北京): Higher Education Press(高等教育出版社), 2004.
[8] Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imagining : theory and design[J]. Chem Rev, 1987, 87: 901-927.
[9] Banci L, Bertini I, Luchinat C. Nuclear and Electronic Relaxation[M]. VCH, Weiheim, 1991.
[10] Zhang Shan-rong(张善荣), Ren Ji-ming(任吉民), Pei Feng-kiu(裴奉奎). The research progress of MRI contrast agents[J\. Progress in Chemistry(化学进展), 1995, 7(2) : 98-112.
[11] Peters J A, Huskens J, Raber D J. Lanthanide induced shifts and relaxation rate enhancements[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 1996, 28(3/4): 283-350.
[12] Caravan P, Ellison J J, McMurry T J, et al. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applica-tions[J]. Chem Rev, 1999, 99: 2 293-2 352.
[13] Merbach A E. The Chemistry of Contrast Agents in Medical MRI[M]. Wiley: Chichester, 2001.
[14] Yu Kai-chao(俞开潮),Wang Guo-ping(王国平),Ding Shang-wu(丁尚武),et al. Recent progresses in the development of contrast agents used in magnetic resonance imaging(用于磁共振成像对比增强的造影剂研发进展)[J]. Chinese J Magn Reson(波谱学杂志), 2004, 21: 505-525.
[15] Major J L, Meade T J. Bioresponsive, Cell-Penetrating, and Multimeric MR Contrast Agents[J]. Acc Chem Res, 2009, 42(7): 893-903.
[16] Werner E J, Datta A, Jocher C J, et al. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging[J]. Angew Chem, Int Ed, 2008, 47(45): 8 568-8 580.
[17] Raymond K N, Pierre V C. Next Generation, High Relaxivity Gadolinium MRI Agents[J]. Bioconjugate Chem, 2005, 16: 3-8.
[18] Louie A Y, Huber M M, Ahrens E T, et al. In vivo visualization of gene expression using magnetic resonance imaging[J]. Nat Biotechnol, 2000, 18: 321-325.
[19] Alauddin M M, Louie A Y, Shahinian A, et al. Receptor mediated uptake of a radiolabeled contrast agent sensitive to β- galactosidase activity[J]. Nucl Med Biol, 2003, 30: 261-265.
[20] Urbanczyk-Pearson L M, Femia F J, Smith J, et al. Mechanistic investigation of β-galactosidase-activated MR contrast agents[J]. Inorg Chem, 2008, 47: 56-68.
[21] Urbanczyk-Pearson, L M, Meade T J. Preparation of magnetic resonance contrast agents activated by β-galactosidase[J]. Nat Protoc, 2008, 3: 341-350.
[22] Aime S, Cabella C, Colombatto S, et al. Insights into the use of paramagnetic Gd(III) complexes in MRmolecular imaging in-vestigations[J]. J Magn Reson Imaging, 2002, 16: 394-406.
[23] Giardiello M, Lowe M P, Botta M. An esterase-activated magnetic resonance contrast agent[J]. Chem Commun, 2007, 4 044-4 046.
[24] Yoo B, Pagel M D. A PARACEST MRI contrast agent to detect enzyme activity[J]. J Am Chem Soc, 2006, 128: 14 032-14 033.
[25] Berridge M J, Lipp P, Bootman M D. The versatility and universality of calcium signalling[J]. Nat Rev Mol Cell Biol, 2000, 1: 11-21.
[26] Li W H, Fraser S E, Meade T J. A calcium-sensitive magnetic resonance imaging contrast agent[J]. J Am Chem Soc, 1999, 121:1 413-1 414.
[27] Li W H, Parigi G, Fragai M, et al. Mechanistic studies of a calcium-dependent MRI contrast agent[J]. Inorg Chem, 2002, 41: 4 018-4 024.
[28] Dhingra K, Maier M E, Beyerlein M, et al. Synthesis and characterization of a smart contrast agent sensitive to calcium[J]. Chem Commun, 2008, 3 444-3 446.
[29] Dhingra K, Fouskova P, Angelovski G, et al. Towards extracellular Ca2+ sensing by MRI: synthesis and calcium-dependent 1H and 17O relaxation studies of two novel bismacrocyclic Gd3+ complexes[J]. JBIC, 2008, 13: 35-46.
[30] Mlshra A, Fousková P, Angelovskl G, et al. Facile synthesis and relaxation properties of novel bispolyazamacrocyclic Gd3+ complexes: An attempt towards calcium-sensitive MRI contrast agents[J]. Inorg Chem, 2008, 47:1 370-1 381.
[31] Angelovskl G, Fousková P, Mamedov I, et al. Smart magnetic resonance imaging agents that sense extracellular calcium fluctua-tions[J]. Chem BioChem, 2008, 9: 1 729-1 734.
[32] Frederickson C J, Koh J Y, Bush A I. The neurobiology of zinc in health and disease[J]. Nat Rev Neurosci, 2005, 6: 449-462.
[33] Hanaoka K, Kikuchi K, Urano Y, et al. Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent[J]. J Chem Soc, Perkin Trans, 2, 2001, 1 840-1 843.
[34] Hanaoka K, Kikuchi, K, Urano Y, et al. Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc Ion[J]. Chem Biol, 2002, 9(9): 1 027-1 032.
[35] Major J L, Parigi G, Luchinat C, et al. The synthesis and in vitro testing of a zinc-activated MRI contrast agent[J]. Proc Natl Acad Sci U S A, 2007, 104(35): 13 881-13 886.
[36] Major J L, Boiteau R M, Meade T J. Mechanisms of ZnII-activated magnetic resonance imaging agents[J]. Inorg Chem, 2008, 47(22): 10 788-10 795.
[37] Esqueda A C, Lopez J A, Andreu-de-Riquer G, et al. A new gadolinium-based MRI zinc sensor[J]. J Am Chem Soc, 2009, 131(32): 11 387-11 391.
[38] Que E L, Chang C J. A smart magnetic resonance contrast agent for selective copper sensing[J]. J Am Chem Soc, 2006, 128:15 942-15 943.
[39] Que E L, Gianolio E, Baker S L, ET AL. Copper-responsive magnetic resonance imaging contrast agents[J]. J Am Chem Soc, 2009, 131: 8 527-8 536.
[40] Zecca L, Youdim, Riederer P, et al. Iron, brain aging and neurodegenerative disorders[J]. Nat Rev Neurosci, 2004, 5(11): 863-873.
[41] Livramento J B, To′ th E′, Sour A, et al. High relaxivity confined to a small molecular space: A metallostarbased, potential MRI contrast agen[J]. Angew Chem, Int Ed, 2005, 44: 1 480-1 484.
[42] Parac-Vogt T N, Elst L V, Kimpe K, et al. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity[J]. Contrast Media Mol Imaging, 2006, 1: 267-278.
[43] Paris J, Gameiro C, Humblet V, et al. Auto-assembling of ditopic macrocyclic lanthanide chelates with transition-metal ions. Rigid multimetallic high relaxivity contrast agents for magnetic resonance imaging[J]. Inorg Chem, 2006, 45: 5 092-5 102.
[44] Ruloff R, van Koten G, Merbach A E. Novel heteroditopic chelate for self-assembled gadolinium(III) complex with high relax-ivity[J]. Chem Commun, 2004, 842-843.
[45] Aime S, Botta M, Crich S G, et al. A macromolecular Gd (III) complex as pH-responsive relaxometric probe for MRI applications[J]. Chem Commun, 1999, 1 577-1 578.
[46] Aime S, Fedeli F, Sanino A, et al. A R2/R1 ratiometric procedure for a concentration-independent, pHResponsive, Gd(Ⅲ)-Based MRI Agent[J]. J Am Chem Soc, 2006, 128:11 326-11 327.
[47] Hovland R, GlΦgârd C, Aasen A J, et al. Gadolinium DO3A derivatives mimicking phospholipids; preparation and in vitro evalua-tion as pH responsive MRI contrast agents[J]. J Chem Soc, Perkin Trans 2, 2001, 929-933.
[48] Zhang S, Wu K, Sherry A D. A Novel pH-Sensitive MRI Contrast Agent\[J\]. Angew Chem Int Ed, 1999, 38:3 192-3 194.
[49] Raghunand N, Howison C, Sherry A D, et al. Renal and systemic pH imaging by contrast-enhanced MRI\[J\]. Magn Reson Med, 2003, 49:249-257.
[50] Woods M, Zhang S, Ebron V H, et al. pH-sensitive modulation of the second hydration sphere in lanthanide(III) tetraamide- DOTA complexes: A novel approach to smart MR contrast media[J]. Chem Eur J, 2003, 9:4 634-4 640.
[51] Woods M, Kiefer G E, Bott S, et al. Synthesis, Relaxometric and photophysical properties of a new pHresponsive MRI contrast agent: The effect of other ligating groups on dissociation of a p-Nitrophenolic pendant arm[J]. J Am Chem Soc, 2004, 126:9 248-9 256.
[52] Zhang S, Sun D, Li X, et al. Synthesis and solvent enhanced relaxation property of water-soluble endohedral metallofullerenols[J]. Fullerene Sci Technol, 1997, 5:1 635-1 643.
[53] Mikawa M, Kato H, Okumura M, et al. Paramagnetic water-soluble metallofuller- enes having the highest relaxivity for MRI con-trast agents[J]. Bioconjugate Chem, 2001, 12:510-514.
[54] Tóth E, Bolskar R D, Borel A, et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents[J]. J Am Chem Soc, 2005, 127:799-805. |