[1] Nicholson J K, Lindon J C, Holmes E. Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29: 1 181-1 189.[2] Lindon J, Holmes E, Nicholoson J K. Pattern recognition methods and applications in biomedical magnetic resonance[J]. Prog Nucl Mag Res Spe, 2001, 39: 1- 40.[3] Lindon J C, Holmes E, Nicholoson J K, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis [J]. Biomarkers, 2004, 9: 1-31.[4] Clayton T A, Lindon J C, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment[J]. Nature, 2006, 440: 1 073-1 077.[5] Hector C K. Metabonomic modeling of drug toxicity[J]. Pharmacology & Therapeutics, 2006, 109: 92-106.[6] Griffin J L, Nicholls A W. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders[J]. Pharmacogenomics, 2006, 7(7): 1 095-1 107.[7] Nicholson J K, Oflynn M P, Sadler P J. Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects[J]. Biochem J, 1984, 217: 365-375.[8] Wang C, Kong H W, Guan Y F, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis[J]. Anal Chem, 2005, 77(13): 4 108-4 116.[9] Yuan K L, Kong H W, Guan Y F, et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile[J]. J Chromatogr B, 2007, 850(1-2): 236-240.[10] kinen V P, Soininen P, Forsblom C, et al. Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum J]. Mag Res Mat Phy, 2006, 19: 281-296.[11] Jin E S, Burgess S C, Merritt M, et al. Differing mechanisms of hepatic glucose overproduction in triiodothyroninetreated rats vs. Zucker diabetic fatty rats by NMR analysis of plasma glucose[J]. Am J Physiol Endocrinol Metab, 2005, 288: E654-E662.[12] Xu L, Dong J Y, Dai X X, et al. Non-negative matrix factorization for diabetes II metabolic profiling analysis[C]. ICBBE2007, 2007, 1(2): 651-653.[13] Wen J B, Xiao X, Dai X X, et al. Data normalization for diabetes II metabonomics analysis[C]. ICBBE2007, 2007, 2(2): 694-697.[14] Wen J B(温锦波). NMR based metabonomics´s data preprocess methods and its application on diabetes mellitus study(基于NMR的代谢组学的数据预处理方法及其在糖尿病研究的应用)[D]. Xiamen(厦门): Xiamen University(厦门大学), 2007.[15] Xiao X(肖娴), Yang S Y(杨叔禹), Dong J Y(董继扬), et al. Optimization of NMR pulse sequences for metabonomics(基于NMR代谢组学的脉冲序列优化) [J]. J Fuzhou Univ(福州学报), 2007, 35(S): 37-40.[16] Zuppi C, Messana I, Forni F, et al. 1H NMR spectra of normal urines reference ranges of the major metabolites[J]. Clinica Chimica Acta, 1997, 265: 85-97.[17] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401: 788-791.[18] Rao N N, Shepherd S J. Clustering gene expression data for periodic genes based on INMF[J]. Comp Sci, 2006, 4 115: 412-423.[19] Lee D D, Seung H S. Algorithms for non-negative matrix factorization[J]. Adv Neural Info Proc Syst, 2001,13: 556-562.[20] Garvey W T, Kwon S, Zheng D, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance[J]. Diabetes, 2003, 52: 453-462.[21] Soedamah-Muthu S S, Colhoun H M, Thomason M J, et al. The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease[J]. Atherosclerosis, 2003, 167: 243-255.[22] Ding S Y, Xenia T, Hansen B. Nuclear magnetic resonance-determined lipoprotein abnormalities in nonhuman primates with the metabolic syndrome and type 2 diabetes mellitus [J]. Metabolism, 2007, 56(6): 838-846.[23] Messana I, Forni F, Ferrari F, et al. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients[J]. Clin Chem, 1998, 44(7): 1 529-1 534.[24] Ciurtin C , Nicolescu A, et al. Metabolic profiling of urine by H-1-NMR spectroscopy A critical assessment of interpreting metabolite concentrations for normal and diabetes groups[J]. Revista de Chimie, 2007, 58 (1): 51-55.[25] Williams R E, Lenz E M, Evans J A, et al. A combined 1H NMR and HPLC-MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats[J]. J Pharmaceut Biomed, 2005, 38: 465-471.[26] Williams R E, Lenz E M, Evans J A, et al. The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats[J]. Mol Biosys, 2006, 2(3-4): 193-202.[27] Hodavance M S, Ralston S L, Pelczer I, et al. Beyond blood sugar: the potential of NMR-based metabonomics for type 2 human diabetes, and the horse as a possible model [J]. Anal Bioanal Chem, 2007, 387: 533-537.[28] Lauridsen M, Hansen S H, Jaroszewski J W, et al. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage[J]. Anal Chem, 2007, 79: 1 181-1 186.[29] Cloarec O, Dumas M E, Andrew C, et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets[J]. Anal Chem, 2005, 77: 1 282-1 289.[30] Gipson G T, Tatsuoka K S, Brian C S, et al. Weighted least-squares deconvolution method for discovery of group differences between complex biofluid 1H NMR spectra [J]. J Mag Res, 2006, 183: 269-277. |