[1] Palmer A G. NMR Probes of Molecular Dynamics: Overview and comparison with other Techniques[J]. Annu Rev Bioph Biom Struct, 2001, 30: 129-155.
[2] (a) Palmer A G. Probing molecular motion by NMR[J]. Curr Opin Struc Biol, 1997, 7: 732-737; (b) Palmer A G, Kroenke C D, Loria J P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules[J]. Method Enzymol, 2001, 339: 204-238; (c) Fischer M W F, Majumdar A, Zuiderweg E R P. Protein NMR relaxation: theory, applications and outlook[J]. Prog Nucl Mag Res Spect, 1998, 33: 207-272.
[3] (a) Hernandez G, LeMaster D M. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin
[J]. Biochemistry, 2001, 40: 14 384-14 391; (b) Hernandez G, Jenney F E Jr, Adams M W W, et al. Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature[J]. Proc Nat Acad Sci USA, 2000, 97: 3 166-3 170.
[4] Chou J J, Case D A, Bax A. Insights into the mobility of methyl-bearing side chains in proteins from 3JCC and 3JCN couplings[J]. J Am Chem Soc, 2003, 125: 8 959-8 966.
[5] (a) Tolman J R. A novel approach to the retrieval of structural and dynamic information from residual dipolar couplings using several oriented media in biomolecular NMR spectroscopy[J]. J Am Chem Soc, 2002, 124: 12 020-12 030; (b) Meiler J, Peti W, Griesinger C. Dipolar couplings in multiple alignments suggest alpha helical motion in ubiquitin[J]. J Am Chem Soc, 2003, 125: 8 072-8 073; (c) Briggman K B, Tolman J R. De novo determination of bond orientations and order parameters from residual dipolar couplings with high accuracy[J]. J Am Chem Soc, 2003, 125: 10 164-10 165; (d) Clore G M, Schwieters C D. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation[J]. J Am Chem Soc, 2004, 126: 2 923-2 938.
[6] Allerhand A, Doddrell D, Glushko V, et al. Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance[J]. J Am Chem Soc, 1971, 93: 544-546.
[7] Gust D, Moon R B, Roberts J D. Applications of natural-abundance nitrogen-15 nuclear magnetic resonance to large biochemically important molecules[J]. Proc Nat Acad Sci USA, 1975, 72: 4 649-4 700.
[8] (a) McCain D C, Markley J L. Rotational spectral density functions for aqueous sucrose: experimental determination using carbon-13 NMR
[J]. J Am Chem Soc, 1986, 108: 4 259-4 264; (b) Schiksnis R A, Bogusky M J, Tsang P, et al. Structure and dynamics of the Pf1 filamentous bacteriophage coat protein in micelles[J]. Biochemistry, 1989, 28: 1 373-1 381; (c) Henry G D, Weiner J H, Sykes B D. Backbone dynamics of a model membrane protein: 13C NMR spectroscopy of alanine methyl groups in detergent-solubilized M13 coat protein[J]. Biochemistry, 1986, 25: 590-598.
[9] Kay L E, Torchia D A, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease[J]. Biochemistry, 1989, 28: 8 972-8 979.
[10] (a) Boyd J. Short selective pulses for biochemical applications[J]. J Magn Reson, 1995, B106(3): 300-303; (b) Buck M, Boyd J, Redfield C, et al. Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme[J]. Biochemistry, 1995, 34: 4 041-4 055.
[11] (a) Wand A J, Bieber R J, Urbauer J L, et al. Carbon relaxation in randomly fractionally 13C-enriched proteins[J]. J Magn. Reson, 1995, B108: 173-175; (b) LeMaster D M, Kushlan D M. Dynamical Mapping of E. coli Thioredoxin via 13C NMR Relaxation Analysis[J]. J Am Chem Soc, 1996, 118: 9 255-9 264.
[12] (a) Millet O, Muhandiram D R, Skrynnikov N R, et al. Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution[J]. J Am Chem Soc, 2002, 124: 6 439-6 448; (b) Skrynnikov N R, Millet O, Kay L E. Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions[J]. J Am Chem Soc, 2002, 124: 6 449-6 460.
[13] Carr P A, Fearing D A, Palmer A G. 3D accordion spectroscopy for measuring 15N and 13CO relaxation rates in poorly resolved NMR spectra[J]. J Magn Reson, 1998, 132: 25-33.
[14] Kushlan D M, LeMaster D M. Resolution and sensitivity enhancement of heteronuclear correlation for methylene resonances via 2H enrichment and decoupling[J]. J Am Chem Soc, 1993, 3(6): 701-708.
[15] (a) Muhandiram D R, Yamazaki T, Sykes B D, et al. Measurement of 2H T1 and T1ρ Relaxation Times in Uniformly 13C-Labeled and Fractionally 2H-Labeled Proteins in Solution[J]. J Am Chem Soc, 1995, 117: 11 536-11 544; (b) Yang D W, Mittermaier A, Mork Y K, et al. A study of protein side-chain dynamics from new H-2 auto-correlation and C-13 cross-correlation NMR experiments: Application to the N-terminal SH3 domain from drk[J]. J Mol Biol, 1998, 276: 939-954.
[16] Zeng L, Fischer M W F, Zuiderweg E R P. Study of protein dynamics in solution by measurement of 13Cα-13CO longitudinal relaxation[J]. J Biomol NMR, 1996, 7: 157-162.
[17] Ishima R, Louis J M, Torchia D A. Transverse C-13 relaxation of CHD2 methyl isotopmers to detect slow conformational changes of protein side chains[J]. J Am Chem Soc, 1999, 121: 11 589-11 590.
[18] Fischer M W F, Zeng L, Pang Y, et al. Experimental characterization of models for backbone picosecond dynamics in proteins. Quantification of NMR auto- and cross-correlation relaxation mechanisms involving different nuclei of the peptide plane[J]. J Am Chem Soc, 1997, 119: 12 629-12 642.
[19] Norwood T J, Tillett M L, Lian L Y. Influence of cross-correlation between the chemical shift anisotropies of pairs of nuclei on multiplequantum relaxation rates in macromolecules[J]. Chem Phys Lett, 1999, 300: 429-434.
[20] Yang D W, Mittermaier A, Mok Y K, et al. A study of protein side-chain dynamics from new 2H auto-correlation and 13CH2D spin systems[J]. J Mol Biol, 1998, 276: 939-947.
[21] Palmer A G. NMR Characterization of the dynamics of biomacromolecules[J]. Chem Rev, 2004, 104: 3 623-3 639.
[22] Woessner D E. Spin relaxation processes in a two-proton system undergoing anisotropic reorientation[J]. J Chem Phys, 1962, 36: 1-4.
[23] (a) Kowalewski J. Annual Reports on NMR Spectroscopy[M]. London: Academic Press, 1990, V.22; (b) Kowalewski J. Annual Reports on NMR Spectroscopy[M]. London: Academic Press, 1990, V.23.
[24] Werbelow L G, Grant D M. Relaxation Processes: Cross correlation and interference terms[J]. Adv Magn Reson, 1977, 9: 189-193.
[25] (a) Lipari G, Szabo A, Model-Free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[J]. J Am Chem Soc, 1982, 104: 4 546-4 559; (b) Lipari G, Szabo A. Model-Free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[J]. J Am Chem Soc, 1982, 104: 4 559-4 570.
[26] Clore G M, Szabo A, Bax A, et al. Deviations from the simple two-parameter Model-Free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins[J]. J Am Chem Soc, 1990, 112: 4 989-4 991.
[27] Luginbuhl P, Wuthrich K. Semi-classical nuclear spin relaxation theory revisited for use with biological macromolecules[J]. Prog Nucl Mag Res Spect, 2002, 40: 199-247.
[28] (a) Goldman M. Formal theory of spin-lattice relaxation[J]. J Magn Reson, 2001, 149: 160-187; (b) Murali N, Krishnan V V. A primer for nuclear magnetic relaxation in liquids[J]. Concept Magnetic Res, 2003, 17A: 86-116.
[29] Cavanagh J, Fairbrother W J, Palmer A G, et al. Protein NMR Spectroscopy: Principles and Practice[M]. San Diego: Academic. 1996, 587.
[30] (a) Fushman D, Tjandra N, Cowburn D. Direct Measurement of 15}N Chemical Shift Anisotropy in Solution[J]. J Am Chem Soc, 1998, 120: 10 947-10 952; (b) Kroenke C D, Rance M, Palmer A G. Variability of the 15}N Chemical Shift Anisotropy in Escherichia coli Ribonuclease H in Solution[J]. J Am Chem Soc, 1999, 121: 10 119-10 125.
[31] Cole R, Loria J P. FAST-Modelfree: A program for rapid automated analysis of solution NMR spin-relaxation data[J]. J Biomol NMR, 2003, 26: 203-213.
[32] Barbato G, Ikura M. Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible[J]. Biochemistry, 1992, 31: 5 269-5 278.
[33] Ikura M, Clore G M. Solution structure of a calmodulin-target peptide complex by multidimensional NMR[J]. Science, 1992, 256: 632-638.
[34] Nicholson L K, Yamazaki T. Flexibility and function in HIV-1 protease[J]. Nat Struct Biol, 1995, 2: 274-280.
[35] Tugarinov V, Liang Z, Shapiro Y E, et al. A structural mode-coupling approach to 15N NMR relaxation in proteins[J]. J Am Chem Soc, 2001, 123: 3 055-3 063.
[36] Chen J, Brooks C L III, Wright P E. Model-Free analysis of protein dynamics: assessment of accuracy and model selection protocols based on molecular dynamics simulation[J]. J Biomol NMR, 2004, 29: 243-257. |