[1] |
MEI G H, ZHAO F, QI F, et al. Characteristics of the space-borne rubidium atomic clocks for the BeiDou III navigation satellite system[J]. Science China Physics, Mechanics & Astronomy, 2021, 51(1): 118-124. (in Chinese)
|
|
梅刚华, 赵峰, 祁峰, 等. 用于北斗三号卫星导航系统的星载铷原子钟特性[J]. 中国科学: 物理学力学天文学, 2021, 51(1): 118-124.
|
[2] |
JADUSZLIWER B, CAMPARO J. Past, present and future of atomic clocks for GNSS[J]. GPS Solut 2021, 25 (27): 1-13.
|
[3] |
CUI J, MING G, WANG F, et al. Design and studies of an ultra high-performance physics package for vapor-cell rubidium atomic clock[C]// China Satellite Navigation Conference, Beijing, China: Springer, 2022, 910: 403-414.
|
[4] |
LI J, MING G, ZHAO F, et al. A rubidium atomic frequency standard with stability at 10-15 level operated under atmospheric condition[C]// China Satellite Navigation Conference, Springer, 2021, 774:62-73.
|
[5] |
HAO Q, LI W B, HE S G, et al. A physics package for rubidium atomic frequency standard with a short-term stability of 2.4×10-13 τ-1/2[J]. Rev Sci Instrum, 2016, 87(12): 123111.
|
[6] |
郭海荣. 导航卫星原子钟时频特性分析理论与方法研究[D]. 解放军信息工程大学, 2006.
|
[7] |
LIU C, XU F, QU Y, et al. Analysis on Factors Influencing Frequency Drift of Rubidium Clocks for Satellite Navigation[C]// China Satellite Navigation Conference, Changsha, China: Springer, 2016, 390: 645-652.
|
[8] |
何冬, 赵明, 谢军, 等. 基于DDS的导航卫星钟频率漂移率的补偿方法[C]// 第六届中国卫星导航学术年会论文集—S04原子钟技术与时频系统. 中国, 西安, 2015: 68-72.
|
[9] |
CAMPARO J. Does the light shift drive frequency aging in the rubidium atomic clock[J]. IEEE T Ultrason Ferr, 2005, 52(7): 1075-1078.
|
[10] |
COFFER J, SICKMILLER B, CAMPARO J. Cavity Q aging observed via an atomic-candle signal[J]. IEEE T Ultrason Ferr, 2004, 51(2): 139-145.
|
[11] |
CAMPARO J, KLIMCAK C. Influence of the atmosphere on a rubidium clock’s frequency aging[C]// Conference:39th Annual Precise Time and Time Interval (PTTI) Meeting, Long Beach, CA: IEEE Xplore, 2007: 317-322.
|
[12] |
CAMPARO J. Frequency equilibration and the light shift effect for block IIR GPS rubidium clocks[C]// Conference:36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Washington, D C: IEEE Xplore, 2004: 393-410.
|
[13] |
RILEY W J. A history of the rubidium frequency standard. [2011-01-01]. https://ieee-uffc.org/presentation/history-rubidium-frequency-standard
|
[14] |
VANIER J, GAGNEPAIN J J, RILEY W J, et al. Aging, warm-up time and retrace: important characteristics of standard frequency generators[C]// Frequency Control Symposium, Hershey, PA, USA: IEEE, 1992: 807-815.
|
[15] |
WANG P F, WANG F, ZHAO F, et al. Performance analysis of BD III satellite rubidium atomic clock based on satellite-ground two-way time transfer data[J]. Progress in astronomy, 2021, 39(4): 555-564.
|
|
王鹏飞, 王芳, 赵峰, 等. 基于星地双向时间比对数据的北斗三号铷原子钟在轨性能评估[J]. 天文学进展, 2021, 39(4): 555-564.
|
[16] |
CARLÉ C, KESHAVARZI S, MURSA A, et al. Reduction of helium permeation in microfabricated cells using aluminosilicate glass substrates and Al2O3 coatings[J]. J Appl Phys, 2023, 133 (21): 214501.
|
[17] |
YASHCHISHIN I N, ZHUK L V, KOZII O I. Diffusion processes in lead-silicate glasses in gas heat treatment with nitrogen[J]. Glass & Ceramics, 2006, 63(11-12): 408-410.
|