[1] |
VANNICOLA F, BEARD R, WHITE J, et al. GPS block IIF atomic frequency standard analysis[C]// Proceedings of the 42nd Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, Virginia, 2010: 181-196.
|
[2] |
JADUSZLIWER B, CAMPARO J. Past, present and future of atomic clocks for GNSS[J] GPS Solutions, 2021, 25(1): 1-13.
doi: 10.1007/s10291-020-01037-3
|
[3] |
MALEKI L, PRESTAGE J. Applications of clocks and frequency standards: from the routine to tests of fundamental models[J] Metrologia, 2005, 42(3): S145.
doi: 10.1088/0026-1394/42/3/S15
|
[4] |
RILEY J W. Rubidium atomic frequency standards for GPS block IIR[C]// Proceedings of 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Vienna, Virginia, 1990: 221-230.
|
[5] |
MEI G H, ZHAO F, Qi F, et al. Characteristics of the space-borne rubidium atomic clocks for the BeiDou III navigation satellite system[J]. Sci Sin-Phys Mech As, 2021, 51(1): 118-124.
|
[6] |
CUI J Q, MING G, WANG F, et al. Design and studies of an ultra high-performance physics package for vapor-cell rubidium atomic clock[C]// 2022 Proceedings of China satellite navigation conference (CSNC), Springer, 2022: 403-414.
|
[7] |
LI J, ZHANG J H, BU Y N, et al. Space passive hydrogen maser a passive hydrogen maser for space applications[C]// Proceedings 2016 IEEE International Frequency Control Symposium (IFCS), IEEE, 2016: 1-5.
|
[8] |
BANDI T, AFFOLDERBACH C, STEFANUCCI C. et al, Compact high-performance continuous-wave double-resonance rubidium standard with 1.4×10-13τ-1/2 stability[J]. IEEE T Ultrason Ferr, 2014, 61 (11): 1769-1778.
doi: 10.1109/TUFFC.2013.005955
|
[9] |
FRANÇOIS B, CALOSSO C E, ABDEL H, et al. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks[J] Rev Sci Instrum, 2015, 86(9): 094707.
doi: 10.1063/1.4929384
|
[10] |
VANIER J, AUDOIN C. The Quantum Physics of Atomic Frequency Standards[M]. 1st ed.ed. Bristol and Philadelphia: Adam Hilger, 1989.
|
[11] |
MILETI G, DENG J, WALLS F, et al. Recent progress in laser-pumped rubidium gas-cell frequency standards[C]// 1996 IEEE International Frequency Control Symposium (IFCS), IEEE, 1996: 1066-1072.
|
[12] |
CAMPARO J, HUDSON A. Mesoscopic physics in vapor-cell atomic clocks[C]// 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), IEEE, 2017: 47-54.
|
[13] |
CAMPARO J, MACKAY R. Spectral mode changes in an alkali RF discharge[J] J Appl Phys, 2007, 101(5): 053303.
doi: 10.1063/1.2435914
|
[14] |
XU F, HAO Q, WANG P F, et al. A high signal to noise ratio physics package with a slotted-tube cavity for rubidium atomic clock[J]. Acta Metrologica Sinica, 2016, 37(4): 437-440.
|
|
许风, 郝强, 王鹏飞, 等. 基于开槽管腔的高信噪比铷原子钟物理系统[J]. 计量学报, 2016, 37(4): 437-440.
|
[15] |
NIE S, WANG P F, ZHAO F, et al. A physics package with shot-noise limited frequency stability better than 1×10-13τ-1/2 for rubidium atomic frequency standards[J]. Chinese J Magn Reson, 2022, 39(1): 108-114.
|
|
聂帅, 王鹏飞, 赵峰, 等. 散弹噪声极限稳定度优于1×10-13τ-1/2的铷频标物理系统[J]. 波谱学杂志, 2022, 39(1): 108-114.
|