波谱学杂志 ›› 2021, Vol. 38 ›› Issue (3): 367-380.doi: 10.11938/cjmr20212883

• 研究论文 • 上一篇    下一篇

基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割

霍璐1,2,胡晓欣3,肖勤3,顾雅佳3,褚旭1,4,姜娈1,*()   

  1. 1. 中国科学院上海高等研究院 高端医学影像技术研究中心, 上海 201210
    2. 中国科学院大学, 北京 100049
    3. 复旦大学上海肿瘤医院 放射诊断科, 上海 200032
    4. 上海联影医疗科技股份有限公司 数字技术产业事业群, 上海 201807
  • 收稿日期:2021-01-14 出版日期:2021-09-05 发布日期:2021-03-12
  • 通讯作者: 姜娈 E-mail:jiangl@sari.ac.cn
  • 基金资助:
    国家自然科学基金资助项目(81301282);国家自然科学基金资助项目(81471662);上海市科委科技基金资助项目(13DZ2250300)

Automatic Segmentation of Breast and Fibroglandular Tissues in DCE-MR Images Based on nnU-Net

Lu HUO1,2,Xiao-xin HU3,Qin XIAO3,Ya-jia GU3,Xu CHU1,4,Luan JIANG1,*()   

  1. 1. Center for Advanced Medical Imaging Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Department of Radiology, Shanghai Cancer Hospital of Fudan University, Shanghai 200032, China
    4. Digital Industry Group, Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201807, China
  • Received:2021-01-14 Online:2021-09-05 Published:2021-03-12
  • Contact: Luan JIANG E-mail:jiangl@sari.ac.cn

摘要:

在乳腺动态增强磁共振(DCE-MR)图像中,乳房分割和腺体分割是进行乳腺癌风险评估的关键步骤.为实现在三维脂肪抑制乳腺DCE-MR图像中乳房和腺体的自动分割,本文提出一种基于nnU-Net的自动分割模型,利用U-Net分层学习图像特征的优势,融合深层特征与浅层特征,得到乳房分割和腺体分割结果.同时,基于nnU-Net策略,所使用的模型能根据图像参数自动进行预处理和数据扩增,并动态调整网络结构和参数配置.实验结果表明,在具有多样化参数的三维脂肪抑制乳腺DCE-MR图像数据集上,该模型能准确、有效地实现乳房和腺体分割,平均Dice相似系数分别达到0.969±0.007和0.893±0.054.

关键词: 乳腺动态增强磁共振图像, 乳房分割, 腺体分割, 深度学习, nnU-Net模型

Abstract:

Segmentation of whole breast and fibroglandular tissue (FGT) is an important task for quantitative analysis of breast cancer risk in dynamic contrast enhanced magnetic resonance (DCE-MR) images. In this study, an automated segmentation model based on nnU-Net is proposed to segment the whole breast and FGT in 3D fat-suppressed breast DCE-MR images, taking the advantages of hierarchical image features learning, as well as the fusion of deep features and shallow features. The model could automatically perform preprocessing, data augmentation and dynamic adaptation of network configurations with respect to different imaging parameters. Experimental results show that the method could accurately and efficiently segment the whole breast and FGT in the collected dataset of 3D fat-suppressed breast DCE-MR images with variable imaging characteristics, achieving the average Dice similarity coefficients 0.969±0.007 and 0.893±0.054, respectively, for breast and FGT segmentation.

Key words: breast dynamic contrast enhanced magnetic resonance image, breast segmentation, fibroglandular tissue segmentation, deep learning, nnU-Net model

中图分类号: