|
A NOTE ON THE NUMBER OF BIPARTITE PLANAR MAPS
Liu Yanpei
Acta mathematica scientia,Series B. 1992, 12 (1):
85-88.
Let Hn,m be the number of rooted non-isomorphic bipartite planar maps with m edges and the valency of the rooted face being 2n. This note provides the following results: (Ⅰ)Hn,m=H1,m=∑i=1m|△i|m, m ≥ n;0,m<n;H1,m=(3·2m-1(2m)!)/(m!(m+2)!),m ≥ 1,for n ≥ 2,where |△i|m=((2i-2)!)/((i-1)|i|){(4i-2)α(i+1,m-i)+α(i,m-i)-iα(i,m-i+1)+(i+1)β(i,m-i)},m>i,Meanwhile, the combinatorial identity (Ⅱ)(3·2n(2m-1)/(m+2)+4m-1-m2)((2m-2)!)/((m-1)!(m+1)!)+∑i=2m-1|△i|m=((2m)!)/(m!(m+1)!) is also found. In what mentioned above, α(s, t,) and β(s, t) are expressed by the following finite sums with all the terms positive: α(s,t)=∑j=0t-1((2t)!(2t+s-j-1)!)/(t(t-j-1)|j|(2t-j)|(t+s)|);β(s,t)=∑j=0t-1((2t+1)!(2t+s-j))/(|t(t-j-1)|j|(2t-j+1)|(t+s+1)!).
Related Articles |
Metrics
|