[1] Daubechies I. Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math, 1988, 41:
909-996
[2] Cohen A, Daubechies I. Non-separable bidimensionale wavelet bases. Rev Mat Iberoamericana, 1993, 9:
51-137
[4] Kovaˇcevi´c J, Vetterli M. Nonseparable multidimensional perfect reconstruction filter banks and wavelet
bases for Rn. IEEE Trans Inf Theory, 1992, 38: 533-555
[5] Strang G, Nguyen T. Wavelets and filter banks. Wellesley, MA: Wellesley-Cambridge Press, 1996
[6] Kovaˇcevi´c J, Vetterli M. Perfect reconstruction filter banks for HDTV representation and coding. Image
Comm, 1990, 2: 349-364
[7] Belogay Eugene, Wang Yang. Arbitrarily smooth orthogonal nonseparable wavelets in R2. SIAM J Math
Anal, 1999, 30: 678-697
[8] Grochenig K, Madych W. Multiresolution analysis, Haar bases, and self-similar tilings. IEEE Trans Infom
Theory, 1992, 38: 558-568
[9] Huang Daren, Li Yunzhang, Sun Qiyu. Refinable function and refinement mask with polynomial and
exponential decay. Chin Ann Math, 1999, 20A: 483-488 (Chinese Edition)
[10] Li Yunzhang. An estimate of the regularity of a class bidimensional nonseparable refinable functions. Acta
Math Sinica, 1999, 42: 1053-1064 (Chinese Edition)
[11] Daubechies I. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992
[12] Long Ruilin. Wavelet analysis in higher dimensions. Beijing: World Book Pulication Coorporation, 1995
(Chinese Edition)
[13] Tian Xiongfei, Li Yunzhang. A class of bidimensional nonseparable wavelet packets. Acta Math Sci, 2002,
22B(1): 131-137
|