[1] Mazur S. ¨Uber konvexe mengen in linaeren normierten r¨aumen. Studia Math, 1933, 4: 70-84
[2] Asplund E. Fr´echet differentiability of convex functions. Acta Math, 1968, 121: 31-47
[3] Namioka I, Phelps R R. Banach spaces which are Asplund spaces. Duke Math J, 1975, 42: 735-750
[4] Bourgin R D. Geometric Aspects of Convex Sets with the Radon-Nikodym Property. Lect Notes in Math
993. Springer-Verlag, 1983.
[5] Fabian M J. Gˆateaux Differentiability of Convex Functions and Topology, Weak Asplund Space. John
Wiley& Sons, INC, 1997
[6] Giles J R. Convex Analysis with Application to Differentiation of Convex Functions. Res Notes in Math.
Pitman-Boston-London-Melbourne, 1982
[7] Phelps R R. Convex Functions, Differentiability and Monotone Operators. Lect Notes in Math 1364.
Springer-Verlag, 1989
[8] Shi Shuzhong. Non-smooth analysis(in Chinese). Adv Math, 1986, 15(1): 9-21
[9] Coban M, Kenderov P S. Dense Gˆateaux differentiability of the sup-norm in C(T) and the topological
properties of T. C R Acad Bulgare Sci, 1985, 38: 1603-1604
[10] Talagrand M. Deux exemples de fonctions convexes. C R Acad Sc Paris, 1979, 288: 461-464
[11] Larman D G, Phelps R R. Gˆateaux differentiability of convex functions on Banach spaces. J London Math
Soc, 1979, 20: 115-127
[12] Cheng Lixin, Fabian M. The product of a Gˆateaux differentiability space and a separable space is a Gˆateaux
differentiability space. Proc Amer Math Soc, 2001, 129(12): 3539-3541
[13] Wu Congxin, Cheng Lixin. Differentiability of convex functions in locally convex space (I). J Harbin Inst
Tech, 1994, E-1(1): 7-12
[14] Cheng Lixin. Differentiability property and perturbed optimization or variational principle in locally
convex spaces. Acta Anal Funct, 1999, 1(3): 231-244
[15] Sharp B. The differentiability of convex functions on topological linear spaces. Bull Austral Math Soc,
1990, 42: 201-213
[16] Eyland R, Sharp B. Convex space: classification by differentiable convex functions. Bull Austral Math
Soc, 1992, 46: 127-138
[17] Wu Congxin, Wang Xiaomin, Cheng Lixin, etc. On the Asplund property of locally convex spaces. J Math
Anal Appl, 1996, 204: 432-443
[18] Cheng Lixin. On the P-Asplund space of a Banach space. Acta Anal Funct Appl, 2001, 3(2): 120-128
[19] Cheng Lixin, Shi Shuzhong, Lee E S. Generic Fr´echet differentiability of convex functions on non-Asplund
spaces. J Math Anal Appl, 1997, 214: 367-377
[20] Cheng Lixin, Shi Shuzhong, Wang Bingwu, etc. Generic Fr´echet differentiability of convex functions
dominated by a lower semicontinuous convex function. J Math Anal Appl, 1998, 225: 389-400
[21] Giles J R, Sciffer S. Separable determination of Fr´echet differentiability of convex functions. Bull Austral
Math Soc, 1995, 52: 161-167
[22] Tang Wee-Kee. On Fr´echet differentiability of convex functions on Banach spaces. Comment Math Univ
Carolin, 1995, 36(2): 249-253
|