[1] Lutwak E. Daul mixed volumes. Pacific J Math, 1975, 58: 531-538
[2] Lutwak E. Intersection bodies and daul mixed volumes. Adv Math, 1988, 71: 232-261
[3] Lutwak E. Centroid bodies and daul mixed volumes. Proc London Math Soc, 1990, 60: 365-391
[4] Gardner R J. Stability of inequalities in the dual Brunn-Minkowski theory. J Math Anal Appl, 1999, 231:
568-587
[5] Zhang G Y. Centered bodies and daul mixed volumes. Trans Amer Math Soc, 1994, 345: 777-801
[6] Klain D A. Star valuations and daul mixed volumes. Adv Math, 1996, 121: 80-101
[7] Giannopoulos A, Hartzoulaki M, Paouris G. On a local version of the Aleksandrov-Fenchel inequality for
the quermassintegrals of a convex body. Proc Amer Math Soc, 2002, 130: 2403-2412
[8] Fradelizi M, Giannopoulos A, Meyer M. Some inequalities about mixed volumes. Israel Journal of Math,
2003, 135: 157-179
[9] Schneider R. Convex Bodies: The Brunn-Minkoeski Theory. Cambridge: Cambridge Univ Press, 1993
[10] Gardner R J. Intersection bodies and the Busemann-Petty problem. Trans Amer Math Soc, 1994, 342:
435-445
[11] Leng Gangsong, Zhang Liansheng. Extreme Properties of quermassintegrals of convex bodies. Science in
China, 2001,44: 837-845
[12] Zhang G Y. Intersection bodies and the Busemann-Petty inequalities in R4. Ann Math, 1994,140: 331-346
[13] Ball K. Shadows of convex bodies. Trans Amer Math Soc, 1991, 327:891-901
[14] Stanley R P. Two combinatorial applications of the Aleksandrov-Fenchel inequalities. J Combin Theory,
1981, 31A: 56-65
[15] Bergstrom H. A triangle inequality for matrices. Den Elfte Skandinaviske Matematikerkongress. Trond-
heim, 1949. Oslo Johan Grundt Tanums Forlag, 1952
[16] Ky Fan. Some inequalities concerning positive-definite Hermitian matrices. Proc Cambridge Phil Soc,
1955, 51: 414-421
17 Xiong Ge, Li Deyi. Reconstructing triangles inscvibed in convex bodies from X-ray functions. Acta
Mathematica Scientia, 2004, 24B(4): 608-612
|