[1] H¨ormander L. Lectures on Nonlinear Hyperbolic Differential Equations. Math´ematiques et Applications
26. Berlin: Springer Verlag, 1997
[2] Klainerman S. Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four
space-time dimensions. Comm Pure Appl Math, 1985, 38: 631-641
[3] Moriyama K, Tonegawa S, Tsutsumi Y. Almost global existence of solutions for the quadratic semilinear
Klein-Gordon equation in one space dimension. Funkcialaj Ekvacioj, 1997, 40: 313-333
[4] Delort JM. Existence globale et comportement asymptotique pour l’´equation de Klein-Gordon quasilin´eaire
`a donn´ees petites en dimension 1. Pr´e publications Math´e matiques de l‘Universit´e Paris, 1999, 13: 99-21
[5] Ozawa T, Tsutaya K, Tsutsumi Y. Global existence and asymptotic behavior of solutions for the Klein-
Gordon equations with quadratic nonlinearity in two space dimensions. Math Z, 1996, 222: 341-362
[6] Shatah J. Normal forms and quadratic nonlinear Klein-Gordon equations. Comm Pure Appl Math, 1985,
38: 685-696
[7] Sunagawa H. On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations
with different mass terms in one space dimension. J Differential Equation, 2003, 192: 308-325
[8] Bony J M. Calcul symbolique et propagation des singularit´es pour les ´equations aux d´eriv´ees partielles
non lin´eaires. Ann Sci ´Ecole Norm Sup, 1980, 14: 209-246
[9] Simon J, Taflin E. The Cauchy problem for nonlinear Klein-Gordon equations. Comm Math Phys, 1993,
152: 433-478
[10] Delort J M, Fang D, Xue R. Global existence of small solutions for quadratic quasi-linear Klein-Gordon
systems in two space dimensions. J Functional Anal, 2004, 211: 288-323
|