Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Lu Shanzhen; Mo Huixia
Received:
Revised:
Online:
Published:
Contact:
Abstract:
Let L be the infinitesimal generator of an analytic semigroup on L2(Rn) with Gaussian kernel bounds, and L-α/2 be the fractional integrals generated by L for 0 < α< n. Let Tj,1 be the singular integral with nonsmooth kernel related to L, or Tj,1 = I, Tj,2, Tj,4 be the linear operators, which are bounded on Lp(Rn) for 1 < p < 1, and Tj,3 = ±I(j = 1, 2, · · · , m), where I is the identity operator. For b ∈ L1loc(Rn), denote the Toeplitz-type operator by
Θba f = ∑m j=1 (Tj,1MbIα Tj,2 + Tj,3MbIα Tj,4), where Mb is a multiplication operator. When b ∈Λβ(0 < < 1), the authors consider the boundedness of Θbα.
Key words: Toeplitz type operator, generalized fractional integral, singular integral with nonsmooth kernel, Lipschitz function space
CLC Number:
Lu Shanzhen; Mo Huixia. TOEPLITZ-TYPE OPERATORS ON LEBESGUE SPACES[J].Acta mathematica scientia,Series B, 2009, 29(1): 140-150.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(09)60014-X
http://121.43.60.238/sxwlxbB/EN/Y2009/V29/I1/140
Cited