Acta mathematica scientia,Series B ›› 2020, Vol. 40 ›› Issue (5): 1495-1524.doi: 10.1007/s10473-020-0519-5
• Articles • Previous Articles Next Articles
Jianhua CHEN1, Xianjiu HUANG1, Bitao CHENG2, Xianhua TANG3
Received:
2018-09-27
Revised:
2020-06-01
Online:
2020-10-25
Published:
2020-11-04
Contact:
Xianjiu HUANG
E-mail:xjhuangxwen@163.com
Supported by:
CLC Number:
Jianhua CHEN, Xianjiu HUANG, Bitao CHENG, Xianhua TANG. EXISTENCE AND CONCENTRATION BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF GENERALIZED QUASILINEAR SCHRÖDINGER EQUATIONS IN $\mathbb{R}^N$[J].Acta mathematica scientia,Series B, 2020, 40(5): 1495-1524.
[1] | Aubin J P, Ekeland I. Applied Nonlinear Analysis, Pure and Apllied Mathematics. New York:John Wiley & Sons, Inc, 1984 |
[2] | Alves C O, Souto M A S. Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J Differential Equations 2013, 254:1977-1991 |
[5] | Bass F G, Nasanov N N. Nonlinear electromagnetic-spin waves. Phys Rep, 1990, 189:165-223 |
[4] | Bouard A D, Hayashi N, Saut J, Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Comm Math Phys, 1997, 189:73-105 |
[5] | Brezis H, Nirenberge L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math, 1983, 36:437-477 |
[6] | Cassani D, do Ó J M, Moameni A. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Commun Pure Appl Anal, 2010, 9:281-306 |
[7] | Chen X L, Sudan R N. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys Rev Lett, 1993, 70:2082-2085 |
[8] | Cheng Y, Yang J. Positive solution to a class of relativistic nonlinear Schrödinger equation. J Math Anal Appl, 2014, 411:665-674 |
[9] | Cheng Y, Yang J. Soliton solutions to a class of relativistic nonlinear Schrödinger equations. Appl Math Comput, 2015, 260:342-350 |
[10] | Chen J H, Tang X H, Cheng B T. Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations. Appl Math Lett, 2017, 74:20-26 |
[11] | Chen J H, Tang X H, Cheng B T. Ground states for a class of generalized quasilinear Schrödinger equations in RN. Mediterr J Math, 2017, 14:190 |
[12] | Chen J H, Tang X H, Cheng B T. Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrodinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent. J Math Phys, 2018, 59:021505 |
[13] | Chen J H, Tang X H, Cheng B T. Ground state sign-changing solutions for a class of generalized quasilinear Schrodinger equations with a Kirchhoff-type perturbation. J Fixed Point Theory Appl, 2017, 19:3127-3149 |
[14] | Chen J H, Tang X H, Cheng B T. Existence and concentration of ground state solutions for a class of generalized quasilinear Schrödinger equation in R2. Preprint |
[15] | Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J Differ Equ, 2016, 260:1228-1262 |
[16] | Deng Y, Peng S, Yan S. Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth. J Differ Equ, 2015, 258:115-147 |
[17] | Deng Y, Peng S, Wang J. Nodal soliton solutions for generalized quasilinear Schrödinger equations. J Math Phys, 2014, 55:051501 |
[18] | Deng Y, Peng S, Wang J. Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J Math Phys, 2013, 54:011504 |
[19] | do Ó J M, Severo U. Solitary waves for a class of quasilinear Schrödinger equtions in dimension two. Calc Var Partial Differ Equ, 201038:375-315 |
[20] | Furtado M F, Silva E D, Silva M L. Existence of solutions for a generalized elliptic problem. J Math Phys, 2017, 58:031503 |
[21] | He X, Qian A, Zou W. Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth. Nonlinearity, 2013, 26:3137-3168 |
[22] | Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys B, 1980, 37:83-87 |
[23] | Kurihara S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50:3262-3267 |
[24] | Li Q, Wu X. Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical or supercritical growths. Acta Math Sci, 2017, 37B:1870-1880. |
[25] | Lange H, Poppenberg M, Teismann H. Nash-Moser methods for the solution of quasilinear Schrödinger equations. Comm Partial Differ Equ, 1999, 24:1399-1418 |
[26] | Laedke E, Spatschek K, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24:2764-2769 |
[27] | Liu J, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations, I. Proc Amer Math Soc, 2003, 131:441-448 |
[28] | Liu J, Wang Y, Wang Z Q. Soliton solutions for quasilinear Schrödingerequations, Ⅱ. J Differ Equ, 2003, 187:47-493 |
[29] | Liu J, Wang Y, Wang Z Q. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm Partial Differ Equ, 2004, 29:879-901 |
[30] | Cuccagna S. On instability of excited states of the nonlinear Schrödinger equation. Phys D, 2009, 238:38-54 |
[31] | Li F, Zhu X, Liang Z. Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. J Math Anal Appl, 2016, 443:11-38 |
[32] | Li Q, Teng K, Wu X. Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation. Math Methods Appl Sci, 2017, 40:2165-2176 |
[33] | Li Q, Wu X. Multiple solutions for generalized quasilinear Schrödinger equations. Math Methods Appl Sci, 2017, 40:1359-1366 |
[34] | Li Q, Wu X. Existence, multiplicity, and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J Math Phys, 2017, 58:041501 |
[35] | Moameni A. Existence of solition solutions for a quasilinear Schrödinger equation involving critical exponent in RN. J Differ Equ, 2006, 229:570-587 |
[36] | Makhankov V G, Fedyanin V K. Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys Rep, 1984, 104:1-86 |
[37] | Poppenberg M, Schmitt K, Wang Z Q. On the existence of soliton solutons to quasilinear Schrödinger equations. Calc Var Partial Differ Equ, 2002, 14:329-344 |
[38] | Pino M D, Felmer P L. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc Var Partial Differ Equ, 1996, 4:121-137 |
[39] | Ritchie B. Relativistic self-focusing and channel formation in laser-plasma interaction. Phys Rev E, 1994, 50:687-689 |
[40] | Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43:270-291 |
[41] | Ruiz D, Siciliano G. Existence of ground states for a modified nonlinear Schrödinger equation. Nonlinearity, 2010, 23:1221-1233 |
[42] | Silva E A, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc Var Partial Differ Equ, 2010, 39:1-33 |
[43] | Shang X, Zhang J, Existence and concentration behavior of positive solutions for a quasilinear Schrödinger equation. J Math Anal Appl, 2014, 414:334-356 |
[44] | Shen Y, Wang Y. Standing waves for a class of quasilinear Schrödinger equations. Complex Var Elliptic Equ, 2016, 61:817-84 |
[45] | Shen Y, Wang Y. Two types of quasilinear elliptic equations with degenerate coerciveness and slightly superlinear growth. Appl Math Lett, 2015, 47:21-25 |
[46] | Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal:Theory Methods Appl, 2013, 80:194-201 |
[47] | Wang W, Yang X, Zhao F K. Existence and concentration of ground state solutions for a subcubic quasilinear problem via Pohožaev manifold. J Math Anal Appl, 2015, 424:1471-1490 |
[48] | Wang Y, Zou W. Bound states to critical quasilinear Schrödinger equations. Nonlinear Differ Equ Appl, 2012, 19:19-47 |
[49] | Willem M. Minimax Theorems. Boston, MA:Birkhäuser, 1996 |
[50] | Yu Y, Zhao F K, Zhao L. The concentration behavior of ground state solutions for a fractional SchrödingerPoisson system. Calc Var Partial Differ Equ, 2017, 56:116 |
[51] | Zhu X, Li F, Liang Z. Existence of ground state solutions to a generalized quasilinear Schrödinger-Maxwell system. J Math Phys, 2016, 57:101505 |
[1] | Quansen JIU, Fengchao WANG. LOCAL EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO THE TWO DIMENSIONAL NONHOMOGENEOUS INCOMPRESSIBLE PRIMITIVE EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1316-1334. |
[2] | Weifeng JIANG, Zhen WANG. THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1229-1239. |
[3] | Jianjun HUANG, Zhenglu JIANG. GLOBAL EXISTENCE FOR THE RELATIVISTIC ENSKOG EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1335-1351. |
[4] | Yao DU, Chunlei TANG. GROUND STATE SOLUTIONS FOR A SCHRÖDINGER-POISSON SYSTEM WITH UNCONVENTIONAL POTENTIAL [J]. Acta mathematica scientia,Series B, 2020, 40(4): 934-944. |
[5] | Wentao HUANG, Li WANG. GROUND STATE SOLUTIONS OF NEHARI-POHOZAEV TYPE FOR A FRACTIONAL SCHRÖ DINGER-POISSON SYSTEM WITH CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2020, 40(4): 1064-1080. |
[6] | Hongmin LI, Yuelong XIAO. LOCAL WELL-POSEDNESS OF STRONG SOLUTIONS FOR THE NONHOMOGENEOUS MHD EQUATIONS WITH A SLIP BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2020, 40(2): 442-456. |
[7] | Syed Sabyel HAIDER, Mujeeb Ur REHMAN. ULAM-HYERS-RASSIAS STABILITY AND EXISTENCE OF SOLUTIONS TO NONLINEAR FRACTIONAL DIFFERENCE EQUATIONS WITH MULTIPOINT SUMMATION BOUNDARY CONDITION [J]. Acta mathematica scientia,Series B, 2020, 40(2): 589-602. |
[8] | Jiali YU, Yadong SHANG, Huafei DI. GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 155-169. |
[9] | Lamia DJEBARA, Salem ABDELMALEK, Samir BENDOUKHA. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME COUPLED SYSTEMS VIA A LYAPUNOV FUNCTIONAL [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1538-1550. |
[10] | E. M. ELSAYED, S. HARIKRISHNAN, K. KANAGARAJAN. ON THE EXISTENCE AND STABILITY OF BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATION WITH HILFER-KATUGAMPOLA FRACTIONAL DERIVATIVE [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1568-1578. |
[11] | Zhensheng GAO, Yan LIANG, Zhong TAN. A GLOBAL EXISTENCE RESULT FOR KORTEWEG SYSTEM IN THE CRITICAL LP FRAMEWORK [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1639-1660. |
[12] | Hua CHEN, Huiyang XU. GLOBAL EXISTENCE, EXPONENTIAL DECAY AND BLOW-UP IN FINITE TIME FOR A CLASS OF FINITELY DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1290-1308. |
[13] | Ahmed ALSAEDI, Bashir AHMAD, Shorog ALJOUDI, Sotiris K. NTOUYAS. A STUDY OF A FULLY COUPLED TWO-PARAMETER SYSTEM OF SEQUENTIAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL INTEGRO-MULTIPOINT BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2019, 39(4): 927-944. |
[14] | Yuzhu WANG, Naiwen TIAN. ON THE CAUCHY PROBLEM FOR IMBQ SYSTEM ARISING FROM DNA [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1136-1148. |
[15] | Phuong LE, Vu HO. LIOUVILLE RESULTS FOR STABLE SOLUTIONS OF QUASILINEAR EQUATIONS WITH WEIGHTS [J]. Acta mathematica scientia,Series B, 2019, 39(2): 357-368. |
|