Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (6): 1661-1673.doi: 10.1007/s10473-019-0615-6
Previous Articles Next Articles
Jacek DZIOK
Received:
2018-04-16
Revised:
2019-05-14
Online:
2019-12-25
Published:
2019-12-30
Supported by:
CLC Number:
Jacek DZIOK. HARMONIC FUNCTION WITH CORRELATED COEFFICIENTS[J].Acta mathematica scientia,Series B, 2019, 39(6): 1661-1673.
[1] Ahuja O. Connections between various subclasses of planar harmonic mappings involving hypergeometric functions. Appl Math Comput, 2008, 198:305-316 [2] Ahuja O P, Jahangiri J M. Certain multipliers of univalent harmonic functions. Appl Math Lett, 2005, 18:1319-1324 [3] Al-Hawary T, Frasin B A, Darus M. Fekete-Szegö problem for certain classes of analytic functions of complex order defined by the Dziok-Srivastava operator. Acta Math Vietnam, 2014, 39:185-192 [4] Al-Khal R A. Goodman-Rřnning-type harmonic univalent functions based on Dziok-Srivastava operator. Appl Math Sci, 2011, 5:573-584 [5] Al-Kharsani H A, Al-Khal R A. Univalent harmonic functions. J Inequal Pure Appl Math, 2007, 8(2):Article 59, 8 pp [6] Al-Shaqsi K, Darus M, Fadipe-Joseph O A. A new subclass of Salagean-type harmonic univalent functions. Abstr Appl Anal, 2010, Art ID 821531, 12 pp [7] Aouf M K, Srivastava H M. Some families of starlike functions with negative coefficients. J Math Anal Appl, 1996, 203:762-790 [8] Darus M, Al-Shaqsi K. On certain subclass of harmonic univalent functions. J Anal Appl, 2008, 6:17-28 [9] Dixit K K, Porwal S. Convolution of the subclass of Salagean-type harmonic univalent functions with negative coefficients. Gen Math, 2010, 18:59-6 [10] Dziok J. Classes of harmonic functions associated with Ruscheweyh derivatives. Rev R Acad Cienc Exactas Fís Nat Ser A Math, 2018(DOI:10.1007/s13398-018-0542-8) [11] Dziok J, Jahangiri J M, Silverman H. Harmonic functions with varying coefficients. J Inequal Appl, 2016, 2016:139 [12] Dziok J, Darus M, Sokół J, Bulboaca T. Generalizations of starlike harmonic functions. C R Math Acad Sci Paris, 2016, 354:13-18 [13] Dziok J, Srivastava H M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform Spec Funct, 2003, 14:7-18 [14] Jahangiri J M. Harmonic functions starlike in the unit disk. J Math Anal Appl, 1999, 235:470-477 [15] Jahangiri J M, Silverman H. Harmonic univalent functions with varying arguments. Int J Appl Math, 2002, 8:267-275 [16] Janowski W. Some extremal problems for certain families of analytic functions I. Ann Polon Math, 1973, 28:297-326 [17] Karpuzoullari S Y, Öztürk M, Yamankaradeniz M. A subclass of harmonic univalent functions with negative coefficients. Appl Math Comput, 2003, 142(2/3):469-476 [18] Krein M, Milman D. On the extreme points of regularly convex sets. Studia Mathematica, 1940, 9:133-138 [19] Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull Amer Math Soc, 1936, 42:689-692 [20] Montel P. Sur les families de functions analytiques qui admettent des valeurs exceptionelles dans un domaine. Ann Sci Ecole Norm Sup, 1912, 23:487-535 [21] Mostafa A O, Aouf M G. Goodman-Rřnning-type multivalent harmonic functions based on Dziok-Srivastava operator. Southeast Asian Bull Math, 2015, 39:829-840 [22] Murugusundaramoorthy G, Vijaya K, Raina R K. A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator. Arch Math (Brno), 2009, 45:37-46 [23] Omar R, Halim S A. Multivalent harmonic functions defined by Dziok-Srivastava operator. Bull Malays Math Sci Soc, 2012, 35(2):601-610 [24] Öztürk M, Yalçin S, Yamankaradeniz M. Convex subclass of harmonic starlike functions. Appl Math Comput, 2004, 154:449-459 [25] Pathak A L, Dixit K K, Agarwal R. A new subclass of harmonic univalent functions associated with Dziok-Srivastava operator. Int J Math Math Sci, 2012, Art. ID 416875, 10 pp [26] Silverman H. Harmonic univalent functions with negative coefficients. J Math Anal Appl, 1998, 220:283-289 [27] Xu Q-H, Xiao H-G, Srivastava H M. Some applications of differential subordination and the DziokSrivastava convolution operator. Appl Math Comput, 2014, 230:496-508 [28] Yalçin S, Öztürk M. Harmonic functions starlike of the complex order. Mat Vesnik, 2006, 58:7-11 [29] Yalçin S, Öztürk M, Yamankaradeniz M. On the subclass of Salagean-type harmonic univalent functions. J Inequal Pure Appl Math, 2007, 8:Article 54, 9 pp |
[1] | Shaoyu DAI, Huaihui CHEN. A SCHWARZ LEMMA FOR HARMONIC FUNCTIONS IN THE REAL UNIT BALL [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1339-1344. |
[2] | Muhammed ARIF, Shahid MAHMOOD, Janusz SOKÓŁ, Jacek DZIOK. NEW SUBCLASS OF ANALYTIC FUNCTIONS IN CONICAL DOMAIN ASSOCIATED WITH A LINEAR OPERATOR [J]. Acta mathematica scientia,Series B, 2016, 36(3): 704-716. |
[3] | TANG Huo, Erhan DENIZ. THIRD-ORDER DIFFERENTIAL SUBORDINATION RESULTS FOR ANALYTIC FUNCTIONS INVOLVING THE GENERALIZED BESSEL FUNCTIONS [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1707-1719. |
[4] | Mohamed K. AOUF, Teodor BULBOACA, Tamer M. SEOUDY. CERTAIN FAMILY OF INTEGRAL OPERATORS PRESERVING SUBORDINATION AND SUPERORDINATION [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1166-1178. |
[5] | REN Guang-Bin, Uwe KAHLER. PSEUDOHYPERBOLIC METRIC AND UNIFORMLY DISCRETE SEQUENCES IN THE REAL UNIT BALL [J]. Acta mathematica scientia,Series B, 2014, 34(3): 629-638. |
[6] | Mohamed K. AOUF, Teodor BULBOACA, Rabha M. EL-ASHWASH. SUBORDINATION PROPERTIES OF MULTIVALENT FUNCTIONS INVOLVING AN EXTENDED FRACTIONAL DIFFERINTEGRAL OPERATOR [J]. Acta mathematica scientia,Series B, 2014, 34(2): 367-379. |
[7] | PENG Zhi-Gang, HAN Qiu-Qiu. ON THE COEFFICIENTS OF SEVERAL CLASSES OF BI-UNIVALENT FUNCTIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 228-240. |
[8] | Jacek DZIOK. PROPERTIES OF THE CONVOLUTION WITH PRESTARLIKE FUNCTIONS [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1685-1694. |
[9] | Jacek DZIOK|Ravinder Krishna RAINA|Janusz SOKóL. DIFFERENTIAL SUBORDINATIONS AND α-CONVEX FUNCTIONS [J]. Acta mathematica scientia,Series B, 2013, 33(3): 609-620. |
[10] | S. HUSSAIN, J. SOKóL. ON A CLASS OF ANALYTIC FUNCTIONS RELATED TO CONIC DOMAINS AND ASSOCIATED WITH CARLSON-SHAFFER OPERATOR [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1399-1407. |
[11] | J. DZIOK, G. MURUGISUNDARAMOORTHY, J. SOKóL. ON CERTAIN CLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1376-1390. |
[12] | Nak Eun Cho. SANDWICH-TYPE THEOREMS FOR MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH THE LIU-SRIVASTAVA OPERATOR [J]. Acta mathematica scientia,Series B, 2012, 32(3): 929-941. |
[13] | Teodor Bulboaca. SANDWICH-TYPE RESULTS FOR A CLASS OF CONVEX INTEGRAL OPERATORS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 989-1001. |
[14] | J. Dziok. CLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH CONIC REGIONS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 765-774. |
[15] | J. Dziok . A UNIFIED CLASS OF ANALYTIC FUNCTIONS WITH FIXED ARGUMENT OF COEFFICIENTS [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1357-1366. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 16
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|