[1] Cartan H. Sur la possibilité d'étendre aux fonctions de plusieurs variables complexes la theorie des fonctions univalents//Montel P, ed. Lecons sur les Fonctions Univalents ou Mutivalents. Paris:Gauthier-Villar, 1933:129-155 [2] Gong S. The Bieberbach Conjecture. Providence, RI:Amer Math Soc, International Press, 1999 [3] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York:Marcel Dekker, 2003 [4] Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in Cn. Complex Variables, 199836:261-284 [5] Liu M S, Zhu Y C. The extension operator in Banach spaces for locally biholomorphic mappings. Acta Math Sci, 2008, 28B(3):711-720 [6] Liu T S, Liu X S. A refinement about estimation of expansion coefficients for normalized biholomorphic mappings. Sci China, 2005, 48:865-879 [7] Liu X S, Liu T S. An inequality of homogeneous expansions for biholomorphic quasi-convex mappings on the unit polydisk and its application. Acta Math Sci, 2009, 29B(1):201-209 [8] Liu X S, Liu M S. Quasi-convex mappings of order α on the unit polydisk in Cn. Rocky Mountain J Math, 2010, 40:1619-1644 [9] Liu X S, Liu T S. The sharp estimate of the third homogeneous expansions for a class of starlike mappings of order α on the unit polydisk in Cn. Acta Math Sci, 2012, 32B(2):752-764 [10] Papadiamantis M K. Polynomial estimates and radius of analyticity on real Banach spaces. 2012, arXiv:1210.7716vl [11] Roper K A, Suffridge T J. Convexity properties of holomorphic mappings in Cn. Trans Amer Math Soc, 1999, 351:1803-1833 [12] Sarantopoulos I. Estimates for polynomial norms on Lp(μ) spaces. Math Proc Cambridge Philos Soc, 1986, 99:263-271 |