Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (4): 1322-1344.doi: 10.1016/S0252-9602(18)30817-8
• Articles • Previous Articles Next Articles
Mohammad ZAREBNIA1, Reza PARVAZ1, Amir SABOOR BAGHERZADEH2
Received:
2016-05-12
Revised:
2017-09-16
Online:
2018-08-25
Published:
2018-08-25
Contact:
Mohammad ZAREBNIA,E-mail:zarebnia@uma.ac.ir
E-mail:zarebnia@uma.ac.ir
Mohammad ZAREBNIA, Reza PARVAZ, Amir SABOOR BAGHERZADEH. DEVIATION OF THE ERROR ESTIMATION FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS[J].Acta mathematica scientia,Series B, 2018, 38(4): 1322-1344.
[1] | Zhuang W. Existence and uniqueness of solutions of nonlinear integro-differential equations of Volterra type in a Banach space. Applicable Analysis, 1986, 22(2):157-166 |
[2] | Brunner H. On the numerical solution of nonlinear Volterra integro-differential equations. BIT Numerical Mathematics, 1973, 13(4):381-390 |
[3] | Zhao J, Corless R M. Compact finite difference method for integro-differential equations. Applied Mathematics and Computation, 2006, 177(1):271-288 |
[4] | Turkyilmazoglu M. An effective approach for numerical solutions of high-order Fredholm integro-differential equations. Applied Mathematics and Computation, 2014, 227:384-398 |
[5] | Turkyilmazoglu M. High-order nonlinear Volterra Fredholm-Hammerstein integro-differential equations and their effective computation. Applied Mathematics and Computation, 2014, 247:410-416 |
[6] | El-Gendi S E. Chebyshev solution of differential, integral and integro-differential equations. Computer Journal, 1969, 12(3):282-287 |
[7] | Stetter H J. The defect correction principle and discretization methods. Numerische Mathematik, 1978, 29(4):425-443 |
[8] | Böhmer K, Hemker P W, Stetter H J. The defect correction approach//Defect Correction Methods, Theory and Applications. Springer, 1984:1-32 |
[9] | Saboor Bagherzadeh A. Defect-based Error Estimation for Higher Order Differential Equations[D]. Vienna:Vienna University of Technology, 2011 |
[10] | Auzinger W, Koch O, Bagherzadeh A S. Error estimation based on locally weighted defect for boundary value problems in second order ordinary differential equations. BIT Numerical Mathematics, 2014, 54(4):873-900 |
[11] | Stoer J, Bulirsch R. Introduction to Numerical Analysis. Springer Science & Business Media, 2013 |
[1] | Yunxia WEI, Yanping CHEN. LEGENDRE SPECTRAL COLLOCATION METHOD FOR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATION OF THE SECOND KIND [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1105-1114. |
[2] | Nermina MUJAKOVIC, Nelida CRNJARIC-ZIC. GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1541-1576. |
[3] | WEN Juan, HE Yin-Nian, WANG Xue-Min, HE Mi-Hui. TWO-LEVEL MULTISCALE FINITE ELEMENT METHODS FOR THE STEADY NAVIER-STOKES PROBLEM [J]. Acta mathematica scientia,Series B, 2014, 34(3): 960-972. |
[4] | YANG Yin, CHEN Yan-Ping, HUANG Yun-Qing. CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(3): 673-690. |
[5] | ZHANG Fa-Yong, GUO Bai-Ling. ATTRACTORS FOR FULLY DISCRETE FINITE DIFFERENCE SCHEME OF DISSIPATIVE ZAKHAROV EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2431-2452. |
[6] | FANG Neng-Sheng, YING Long-An. ANALYSIS OF FDTD TO UPML FOR MAXWELL EQUATIONS IN POLAR COORDINATES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 2007-2032. |
[7] | YUAN Yi-Rang. THE UPWIND FINITE DIFFERENCE METHOD FOR MOVING BOUNDARY VALUE PROBLEM OF COUPLED SYSTEM [J]. Acta mathematica scientia,Series B, 2011, 31(3): 857-881. |
[8] | H. Kim, M. Laforest, D. Yoon. AN ADAPTIVE VERSION OF GLIMM'S SCHEME [J]. Acta mathematica scientia,Series B, 2010, 30(2): 428-446. |
[9] | Ying Longan. THE ASYMPTOTIC LIMIT FOR A COMBUSTION MODEL IN REGARD TO INFINITE REACTION RATE [J]. Acta mathematica scientia,Series B, 2008, 28(4): 924-932. |
[10] | Ma Ning. A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE#br# IMMISCIBLE PROBLEMS [J]. Acta mathematica scientia,Series B, 2007, 27(4): 875-885. |
[11] | Wang Xiaofeng; Cao Guangfu. GALERKIN-PETROV METHODS OF TOEPLITZ OPERATORS ON DIRICHLET SPACE [J]. Acta mathematica scientia,Series B, 2007, 27(2): 308-316. |
[12] | Yuan-Yi-Rang. FINITE DIFFERENCE FRACTIONAL STEP METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE [J]. Acta mathematica scientia,Series B, 2005, 25(3): 427-438. |
[13] | YUAN Yi-Rang. THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS [J]. Acta mathematica scientia,Series B, 2002, 22(4): 489-499. |
[14] | JIANG Da-Qing, WEI Jun-Jie. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR VOLTERRA INTERGO-DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2001, 21(4): 553-560. |
[15] |
DU Jin-Yuan.
THE COLLOCATION METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH CAUCHY KERNELS [J]. Acta mathematica scientia,Series B, 2000, 20(3): 289-302. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|