Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (3): 1025-1042.doi: 10.1016/S0252-9602(18)30799-9
• Articles • Previous Articles Next Articles
Azer KHANMAMEDOV, Sema YAYLA
Received:
2017-06-13
Online:
2018-06-25
Published:
2018-06-25
Contact:
Azer KHANMAMEDOV
E-mail:azer@hacettepe.edu.tr
Supported by:
This work was supported by Research Fund of the Hacettepe University. Project Number:FBB-2017-16218.
Azer KHANMAMEDOV, Sema YAYLA. LONG-TIME DYNAMICS OF THE STRONGLY DAMPED SEMILINEAR PLATE EQUATION IN RN[J].Acta mathematica scientia,Series B, 2018, 38(3): 1025-1042.
[1] Pazy A. Semigroups of linear operators and applications to partial differential equations. New York:Springer, 1983 [2] Cazenave T, Haraux A. An introduction to semilinear evolution equations. New York:Oxford University Press, 1998 [3] Feireisl E. Attractors for semilinear damped wave equations on R3. Nonlinear Anal, 1994, 23:187-195 [4] Feireisl E. Asymptotic behavior and attractors for a semilinear damped wave equation with supercritical exponent. Proc Roy Soc Edinburgh, 1995, 125:1051-1062 [5] Belleri V, Pata V. Attractors for semilinear strongly damped wave equations on R3. Discrete Contin Dyn Syst, 2001, 7:719-735 [6] Conti M, Pata V, Squassina M. Strongly damped wave equations on R3 with critical nonlinearities. Commun Appl Anal, 2005, 9:161-176 [7] Yang Z, Ding P. Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on RN. J Math Anal Appl, 2016, 434:1826-1851 [8] Khanmamedov A.Kh. Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain. Applied Mathematics Letters, 2005, 18:827-832 [9] Khanmamedov A.Kh. Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain. J Differential Equations, 2006, 225:528-548 [10] Wang B. Attractors for reaction diffusion equations in unbounded domains. Phys D, 1999, 128:41-52 [11] Ball J M. Global attractors for damped semilinear wave equations. Discrete Contin Dyn Syst, 2004, 10:31-52 [12] Arat Z, Khanmamedov A, Simsek S. Global attractors for the plate equation with nonlocal nonlinearity in unbounded domains. Dyn Partial Differ Equ, 2014, 11:361-379 [13] Khanmamedov A, Simsek S. Existence of the global attractor for the plate equation with nonlocal nonlinearity in Rn. Discrete Contin Dyn Syst Ser B, 2016, 21:151-172 [14] Chueshov I, Lasiecka I. Von Karman Evolution Equations:Well-posedness and long-time dynamics. New York:Springer, 2010 [15] Simon J. Compact sets in the space Lp(0, T; B). Annali Mat Pura Appl, 1987, 146:65-96 [16] Khanmamedov A.Kh. Global attractors for von Karman equations with nonlinear interior dissipation. J Math Anal Appl, 2006, 318:92-101 [17] Khanmamedov A.Kh. Global attractors for 2-D wave equations with displacement dependent damping. Math Methods Appl Sci, 2010, 33:177-187 [18] Babin A V, Vishik M I. Attractors of evolution equations. Amsterdam:North-Holland, 1992 |
[1] | Lei ZHANG, Bin LIU. THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 651-672. |
[2] | Zaiyun ZHANG, Jianhua HUANG, Mingbao SUN. ALMOST CONSERVATION LAWS AND GLOBAL ROUGH SOLUTIONS OF THE DEFOCUSING NONLINEAR WAVE EQUATION ON R2 [J]. Acta mathematica scientia,Series B, 2017, 37(2): 385-394. |
[3] | LUO Shao-Ying, LIU Qi. SPHERICAL SYMMETRIC SOLUTIONS FOR THE MOTION OF RELATIVISTIC MEMBRANES AND NULL MEMBRANES IN THE REISSNER-NORDSTRÖM SPACE-TIME [J]. Acta mathematica scientia,Series B, 2014, 34(3): 917-931. |
[4] | WANG Yong-Hai, WANG Ling-Zhi. TRAJECTORY ATTRACTORS FOR NONCLASSICAL DIFFUSION EQUATIONS WITH FADING MEMORY [J]. Acta mathematica scientia,Series B, 2013, 33(3): 721-737. |
[5] | GUO Hong-Xia, CHEN Guo-Wang. A NOTE ON “THE CAUCHY PROBLEM FOR COUPLED IMBQ EQUATIONS” [J]. Acta mathematica scientia,Series B, 2013, 33(2): 375-392. |
[6] | LUO Cao. LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION [J]. Acta mathematica scientia,Series B, 2013, 33(1): 75-83. |
[7] | Shun-Tang Wu. EXPONENTIAL DECAY FOR A NONLINEAR VISCOELASTIC EQUATION WITH SINGULAR KERNELS [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2237-2246. |
[8] | ZHANG Fa-Yong, GUO Bai-Ling. ATTRACTORS FOR FULLY DISCRETE FINITE DIFFERENCE SCHEME OF DISSIPATIVE ZAKHAROV EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(6): 2431-2452. |
[9] | CHEN Xue-Yong, LIU Wei-An. GLOBAL ATTRACTOR FOR A DENSITY-DEPENDENT SENSITIVITY CHEMOTAXIS MODEL [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1365-1375. |
[10] | Jeong Ja Bae. ON TRANSMISSION PROBLEM FOR KIRCHHOFF TYPE WAVE EQUATION WITH A LOCALIZED NONLINEAR DISSIPATION IN BOUNDED DOMAIN [J]. Acta mathematica scientia,Series B, 2012, 32(3): 893-906. |
[11] | CHEN Jiao. GLOBAL EXISTENCE AND Lp ESTIMATES FOR SOLUTIONS OF DAMPED WAVE EQUATION WITH NONLINEAR CONVECTION IN#br# MULTI-DIMENSIONAL SPACE [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1167-1180. |
[12] | Donatella Donatelli, Pierangelo Marcati. LOW MACH NUMBER LIMIT ON EXTERIOR DOMAINS [J]. Acta mathematica scientia,Series B, 2012, 32(1): 164-176. |
[13] | Liu Xiaomin, Wang Zhen. THE RIEMANN PROBLEM FOR THE NONLINEAR DEGENERATE WAVE EQUATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(6): 2313-2322. |
[14] | FAN Li-Li, LIU Hong-Xia, YIN Hui. DECAY ESTIMATES OF PLANAR STATIONARY WAVES FOR DAMED WAVE EQUATIONS WITH NONLINEAR CONVECTION IN#br# MULTI-DIMENSIONAL HALF SPACE [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1389-1410. |
[15] | Jeong Ja Bae. GLOBAL EXISTENCE FOR QUASILINEAR |WAVE EQUATION WITH A LOCALIZED WEAKLY NONLINEAR DISSIPATION IN EXTERIOR DOMAINS [J]. Acta mathematica scientia,Series B, 2009, 29(5): 1203-1215. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|