Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (2): 479-496.doi: 10.1016/S0252-9602(18)30762-8
• Articles • Previous Articles Next Articles
Zhou SHENG, Gonglin YUAN, Zengru CUI
Received:
2016-07-09
Revised:
2016-10-13
Online:
2018-04-25
Published:
2018-04-25
Contact:
Gonglin YUAN
E-mail:glyuan@gxu.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (11661009), the Guangxi Science Fund for Distinguished Young Scholars (2015GXNSFGA139001), the Guangxi Natural Science Key Fund (2017GXNSFDA198046), and the Basic Ability Promotion Project of Guangxi Young and Middle-Aged Teachers (2017KY0019).
Zhou SHENG, Gonglin YUAN, Zengru CUI. A NEW ADAPTIVE TRUST REGION ALGORITHM FOR OPTIMIZATION PROBLEMS[J].Acta mathematica scientia,Series B, 2018, 38(2): 479-496.
[1] Andrei N. An adaptive conjugate gradient algorithm for lagre-scale unconstrained optimization. J Comput Appl Math, 2016, 292:83-91 [2] Yuan G. Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim Lett, 2009, 3:11-21 [3] Yuan G, Lu X. A modified PRP conjugate gradient method. Anna Operat Res, 2009, 166:73-90 [4] Yuan Lu X, Wei Z. A conjugate gradient method with descent direction for unconstrained optimization. J Comput Appl Math, 2009, 233:519-530 [5] Yuan G, Wei Z, Zhao Q. A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization problems. IEEE Tran, 2014, 46:397-413 [6] Yuan G, Meng Z, Li Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J Optimiz Theory App, 2016, 168:129-152 [7] Yuan G, Zhang M. A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations. J Comput Appl Math, 2015, 286:186-195 [8] Yuan G, Zhang M. A modified Hestenes-Stiefel conjugate gradient algorithm for large-scale optimization. Numer Func Anal Opt, 2013, 34:914-937 [9] Zhang H, Ni Q. A new regularized quasi-Newton algorithm for unconstrained optimization. Appl Math Comput, 2015, 259:460-469 [10] Lu X, Ni Q. A quasi-Newton trust region method with a new conic model for the unconstrained optimization. Appl Math Comput, 2008, 204:373-384 [11] Wei Z, Li G, Qi L. New quasi-Newton methods for unconstrained optimization problems. Appl Math Comput, 2006, 175:1156-1188 [12] Yuan G, Wei Z. The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective functions. Acta Math Sci, 2008, 24B:35-42 [13] Yuan G, Wei Z, Lu X. Global convergence of the BFGS method and the PRP method for general functions under a modified weak Wolfe-Powell line search. Appl Math Model, 2017, 47:811-825 [14] Yuan G, Sheng Z, Wang B, et al, The global convergence of a modified BFGS method for nonconvex functions. J Comput Appl Math, 2018, 327:274-294 [15] Fan J, Yuan Y. A new trust region algorithm with trust region radius converging to zero//Li D. Proceedings of the 5th International Conference on Optimization:Techniques and Applications (December 2001, Hongkong), 2001:786-794 [16] Hei L. A self-adaptive trust region algorithm. J Comput Math, 2003, 21:229-236 [17] Shi Z, Guo J. A new trust region method for unconstrained optimization. J Comput Appl Math, 2008, 213:509-520 [18] Shi Z, Wang S. Nonmonotone adaptive trust region mthod. Eur J Oper Res, 2011, 208:28-36 [19] Zhang X, Zhang J, Liao L. An adaptive trust region method and its convergence. Sci in China, 2002, 45A:620-631 [20] Zhou Q, Zhang Y, Xu F, et al. An improved trust region method for unconstrained optimization. Sci China Math, 2013, 56:425-434 [21] Ahookhosh M, Amini K. A nonmonotone trust region method with adaptive radius for unconstrained optimization problems. Comput Math Appl, 2010, 60:411-422 [22] Amini K, Ahookhosh M. A hybrid of adjustable trust-region and nonmonotone algorithms for unconstrained optimization. Appl Math Model, 2014, 38:2601-2612 [23] Sang Z, Sun Q. A new non-monotone self-adaptive trust region method for unconstrained optimization. J Appl Math Comput, 2011, 35:53-62 [24] Cui Z, Wu B. A new modified nonmonotone adaptive trust region method for unconstrained optimization. Comput Optim Appl, 2012, 53:795-806 [25] Zhang X. NN models for general nonlinear programming, in Neural Networks in optimization. Dordrecht/Boston/London:Kluwer Academic Publishers, 2000 [26] Li G. A trust region method with automatic determination of the trust region radius. Chinese J Eng Math (in Chinese), 2006, 23:843-848 [27] Yuan G, Wei Z. A trust region algorithm with conjugate gradient technique for optimization problems. Numer Func Anal Opt, 2011, 32:212-232 [28] Yuan Y. Recent advances in trust region algorithms. Math Program, 2015, 151:249-281 [29] Powell M J D. A new algorithm for unconstrained optimization//Rosen J B, Mangasarian O L, Ritter K. Nonlinear Programming. New York:Academic Press, 1970:31-65 [30] Schnabel R B, Eskow E. A new modified Cholesky factorization. SIAM J Sci Comput, 1990, 11:1136-1158 [31] Zhang J, Wang Y. A new trust region method for nonlinear equations. Math Method Oper Res, 2003, 58:283-298 [32] Yuan G, Wei Z, Lu X. A BFGS trust-region method for nonlinear equations. Computing, 2011, 92:317-333 [33] Fan J, Pan J. An improve trust region algorithm for nonlinear equations. Comput Optim Appl, 2011, 48:59-70 [34] Yuan G, Wei Z, Li G. A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs. J Comput Appl Math, 2014, 255:86-96 [35] Yuan G, Wei Z. Convergence analysis of a modified BFGS method on convex minimizations. Comput Optim Appl, 2010,47:237-255 [36] Xiao Y, Wei Z, Wang Z. A limited memory BFGS-type method for large-scale unconstrained optimization. Comput Math Appl, 2008, 56:1001-1009 [37] Yuan Y, Sun W. Optimization Theory and Methods. Beijing:Science Press, 1997 [38] Powell M J D. Convergence properties of a class of minimization algorithms//Mangasarian Q L, Meyer R R, Robinson S M. Nonlinear Programming. Vol 2. New York:Academic Press, 1975 [39] Steihaug T. The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal, 1983, 20:626-637 [40] Moré J J, Garbow B S, Hillstrom K H. Testing unconstrained optimization software. ACM Tran Math Software, 1981, 7:17-41 [41] Dolan E D, Moré J J. Benchmarking optimization software with performance profiles. Math Program, 2002, 91:201-213 [42] Andrei N. An unconstrained optimization test function collection. Advan Model Optim, 2008, 10:147-161 |
[1] | R. ABOULAICH, B. ACHCHAB, A. DAROUICHI. PARAMETER IDENTIFICATION BY OPTIMIZATION METHOD FOR A POLLUTION PROBLEM IN POROUS MEDIA [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1345-1360. |
[2] | M. PIRHAJI, M. ZANGIABADI, H. MANSOURI. A CORRECTOR-PREDICTOR ARC SEARCH INTERIOR-POINT ALGORITHM FOR SYMMETRIC OPTIMIZATION [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1269-1284. |
[3] | Gholamreza ZAMANI ESKANDANI, Soheila AZARMI, Masoumeh RAEISI. PRODUCTS OF RESOLVENTS AND MULTIVALUED HYBRID MAPPINGS IN CAT(0) SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(3): 791-804. |
[4] | QIU Jing-Hui. NON-CONFLICTING ORDERING CONES AND VECTOR OPTIMIZATION IN INDUCTIVE LIMITS [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1670-1676. |
[5] | DING Xie-Ping. NEW SYSTEMS OF GENERALIZED QUASI-VARIATIONAL INCLUSIONS IN FC-SPACES AND APPLICATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(3): 1142-1154. |
[6] | Chi Xiaoni; Liu Sanyang. AN INFEASIBLE-INTERIOR-POINT PREDICTOR-CORRECTOR ALGORITHM FOR THE SECOND-ORDER CONE PROGRAM [J]. Acta mathematica scientia,Series B, 2008, 28(3): 551-559. |
[7] | E. A. Youness; Tarek Emam. CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING SEMI-STRONG AND GENERALIZED SEMI-STRONG E-CONVEXITY [J]. Acta mathematica scientia,Series B, 2008, 28(1): 7-16. |
[8] | Zhang Liping. A GLOBAL LINEAR AND LOCAL QUADRATIC SINGLE--STEP NONINTERIOR#br# CONTINUATION METHOD FOR MONOTONE SEMIDEFINITE COMPLEMENTARITY PROBLEMS [J]. Acta mathematica scientia,Series B, 2007, 27(2): 243-253. |
[9] | Qiu Jinghui. CONE--DIRECTED CONTINGENT DERIVATIVES AND GENERALIZED PREINVEX SET-VALUED OPTIMIZATION [J]. Acta mathematica scientia,Series B, 2007, 27(1): 211-218. |
[10] | Huang Chongchao; Yu Gang; Wang Song; Wang Xianjia. DISRUPTION MANAGEMENT FOR SUPPLY CHAIN COORDINATION WITH EXPONENTIAL DEMAND FUNCTION [J]. Acta mathematica scientia,Series B, 2006, 26(4): 655-669. |
[11] | OU Yi-Gui, HOU Ding-Pi. A SUPERLINEARLY CONVERGENT TRUST REGION ALGORITHM FOR LC1 CONSTRAINED OPTIMIZATION PROBLEMS [J]. Acta mathematica scientia,Series B, 2005, 25(1): 67-80. |
[12] |
WANG Yi-Ju, ZHOU Hou-Chun, WANG Chang-Yu.
A REGULARIZATION NEWTON METHOD FOR MIXED COMPLEMENTARITY PROBLEMS [J]. Acta mathematica scientia,Series B, 2004, 24(3): 376-384. |
[13] | NI Qi, HU Shu-Hua. A NEW DERIVATIVE FREE OPTIMIZATION METHOD BASED ON CONIC INTERPOLATION MODEL [J]. Acta mathematica scientia,Series B, 2004, 24(2): 281-290. |
[14] | ZHANG Li-Ping, GAO Zi-You, LAI Yan-Lian. MERIT FUNCTION AND GLOBAL ALGORITHM FOR BOX CONSTRAINED VARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2002, 22(1): 63-71. |
[15] | TONG Xiao-Jiao, ZHOU Shu-Zi. GLOBAL CONVERGENCE OF A TRUST REGION ALGORITHM USING INEXACT GRADIENT FOR EQUALITY-CONSTRAINED OPTIMIZATION [J]. Acta mathematica scientia,Series B, 2000, 20(3): 365-373. |
|