[1] Kooij R E, Arus J T, Embid A G. Limit cycles in the Holling-Tanner model. Publicacions Matematiques, 1997, 41:149-167 [2] Wang M, Pang P Y H, Chen W. Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment. Ima Journal of Applied Mathematics, 2008, 73(5):815-835 [3] Peng R, Wang M. Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model. Applied Mathematics Letters, 2007, 20(6):664-670 [4] Braza P A. The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing. Siam Journal on Applied Mathematics, 2003, 63(3):889-904 [5] Li J, Gao W. A strongly coupled predator-prey system with modified Holling-Tanner functional response. Computers Mathematics with Applications, 2010, 60(7):1908-1916 [6] Hsu S B, Huang T W. Global stability for a class of predator-prey systems. Siam Journal on Applied Mathematics, 1995, 55(3):763-783 [7] Li X H, Lu C, Du X F. Permanence and global attractivity of a discrete semi-ratio-dependent predatorprey system with Holling IV type functional response. Journal of Mathematical Research with Applications, 2010, 30(3):442-450 [8] Arditi R, Saiah H. Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology, 1992, 73(5):1544-1551 [9] Arditi R, Ginzburg L R, Akcakaya H R. Variation in plankton densities among lakes:a case for ratiodependent predation models. American Naturalist, 1991, 138(5):1287-1296 [10] Gutierrez A P. Physiological basis of ratio-dependent predator-prey theory:the metabolic pool model as a paradigm. Ecology, 1992, 73(5):1552-1563 [11] Arditi R, Ginzburg L R. Coupling in predator-prey dynamics:ratio dependence. Journal of Theoretical Biology, 1989, 139(3):311-326 [12] Liang Z, Pan H. Qualitative analysis of a ratio-dependent Holling-Tanner model. Journal of Mathematical Analysis Applications, 2007, 334(2):954-964 [13] Saha T, Chakrabarti C. Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model. Journal of Mathematical Analysis Applications, 2009, 358(2):389-402 [14] Banerjee M, Banerjee S. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Mathematical Biosciences, 2012, 236(1):64-76 [15] Fellowes M. Stability and complexity in model ecosystems. Biologist, 2001 [16] Ji C, Jiang D, Shi N. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation. Journal of Mathematical Analysis Applications, 2009, 359(2):482-498 [17] Ji C, Jiang D, Shi N. A note on a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation. Journal of Mathematical Analysis Applications, 2011, 377(1):435-440 [18] Lin Y, Jiang D, Jin M. Stationary distribution of a stochastic SLR model with saturated incidence and its asympototic stability. Acta Mathematica Scientia, 2015, 35B(3):619-629 [19] Liu Q, Jiang D, Shi N. Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth. Acta Mathematica Scientia, 2017, 37B(4):927-940 [20] Zu L, Jiang D, O'Regan D. Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predatorprey model with regime switching. Communications in Nonlinear Science Numerical Simulation, 2015, 29(1-3):1-11 [21] Liu M, Wang K. Persistence, extinction and global asymptotical stability of a non-autonomous predatorprey model with random perturbation. Applied Mathematical Modelling, 2012, 36(11):5344-5353 [22] Mao X. Stochastic Differential Equations and Applications. New York:Horwood, 1997 [23] Ji C, Jiang D, Li X. Qualitative analysis of a stochastic ratio-dependent predator-prey system. Journal of Computational Applied Mathematics, 2011, 235:1326-1341 [24] Khasminskii R. Stochastic stability of differential equations. Alphen aan den Rijin:Sijthoff Noordhoff, 1980 [25] Gard T. Introduction tostochastic differential equations. New York-Basel:Marcel Dekker Inc, 1988 [26] Strang G. Linear algebra and its applications. Belmont:Thomson Learning Inc, 1988 [27] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations. Siam Review, 2001, 43(3):525-546 [28] Arnold L. Stochastic differential equations:theory and applications. New York:Wiley, 1972 |