[1] Avellaneda M, Lin F H. Compactness methods in the theory of homogenization. Comm Pure Appl Math, 1987, 40:803-847 [2] Avellaneda M, Lin F H. Compactness methods in the theory of homogenization Ⅱ:equations in nondivergence form. Comm Pure Appl Math, 1989, 42:139-172 [3] Ben Hassen M F, Bonnetier E. An asymptotic formula for the voltage potential in a perturbed ε-periodic composite medium containing misplaced inclusions of size ε. Proc Roy Soc Edinburgh, 2006, 136:669-700 [4] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic Analysis for Periodic Structures. Amsterdam:NorthHolland, 1978 [5] Byun S, Wang L. Elliptic equations with BMO coefficients in Reifenberg domains. Comm Pure Appl Math, 2004, 57:1283-1310 [6] Cioranescu D, Donato P. An Introduction to Homogenization. New York:Oxford University, 1999 [7] Caffarelli L A, Peral I. On W1,p estimates for elliptic equations in divergence form. Comm Pure Appl Math, 1998, 51:1-21 [8] Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton, New Jersey:Princeton University, 1983 [9] Geng J, Shen Z. Uniform regularity estimates in parabolic homogenization. Indiana Univ Math J, 2015, 64:697-733 [10] Kenig C E, Lin F, Shen Z. Homogenization of elliptic systems with Neumann boundary conditions. J Amer Math Soc, 2013, 26:901-937 [11] Kenig C, Prange C. Uniform Lipschitz estimates in bumpy half-spaces. Arch Ration Mech Anal, 2015, 216:703-765 [12] Liao W. A fourth-order finite-difference method for solving the system of two-dimensional Burgers' equations. Int J Numer Meth Fluids, 2010, 64:565-590 [13] Menon G. Lesser known miracles of Burgers equation. Acta Math Sci, 2012, 32B:281-294 [14] Shen Z. Convergence rates and Hölder estimates in almost-periodic homogenization of elliptic systems. Anal PDE, 2015, 8:1565-1601 [15] Shen S F, Zhang J, Pan Z L. New exact solution of (N +1)-dimensional Burgers system. Commun Theor Phys, 2005, 43:389-390 [16] Volkwein S. Application of the augmented Lagrangian-SQP method to optimal control problems for the stationary Burgers equation. Comput Optim Appl, 2000, 16:57-81 [17] Yeh L M. A priori estimate for non-uniform elliptic equations. J Differ Equ, 2011, 250:1828-1849 [18] Yeh L M. Hölder estimate for non-uniform parabolic equations in highly heterogeneous media. Nonlinear Anal, 2012, 75:3723-3745 [19] Zhao G, Yu X, Zhang R. The new numerical method for solving the system of two-dimensional Burgers' equations. Comput Math Appl, 2011, 62:3279-3291 |