Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (6): 1545-1566.doi: 10.1016/S0252-9602(17)30091-7
• Articles • Next Articles
Junfeng LIU1, Ciprian A. TUDOR2
Received:
2016-07-26
Revised:
2017-03-01
Online:
2017-12-25
Published:
2017-12-25
Supported by:
Supported by NNSFC (11401313), NSFJS (BK20161579), CPSF (2014M560368, 2015T80475) and 2014 Qing Lan Project; Supported by MEC Project PAI80160047, Conicyt, Chile.
Junfeng LIU, Ciprian A. TUDOR. STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE: EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY[J].Acta mathematica scientia,Series B, 2017, 37(6): 1545-1566.
[1] Balan R M, Tudor C A. The stochastic heat equation with fractional-colored noise:existence of the solution. Latin Amer J Probab Math Stat, 2008, 4:57-87; Latin Amer J Probab Math Stat, 2009, 6:343-347(erratum)[2] Balan R M, Tudor C A. The stochastic wave equation with fractional noise:a random field approach. Stochastic Process Appl, 2010, 120:2468-2494[3] Balan R M, Tudor C A. Stochastic heat equation with multiplicative fractional-colored noise. J Theor Probab, 2010, 23:834-870[4] Balan R M. The stochastic wave equation with multiplicative fractional noise:a Malliavin calculus approach. Potential Anal, 2012, 36:1-34[5] Balan R M, Conus D. Intermittency for the wave and heat equations with fractional noise in time. Ann Probab, 2015, 44(2):1488-1534[6] Balan R M. Some linear SPDEs driven by a fractional noise with Hurst index greater than 1/2. Infin Dimen Anal Quantum Probab Relat Top, 2012, 15(4):1250023(27 pages)[7] Boulanba L, Eddahbi M, Mellouk M. Fractional SPDEs driven by spatially correlated noise:existence of the solution and smoothness of its density. Osaka J Math, 2010, 47:41-65[8] Chen L, Dalang R C. Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. Stochastic Partial Differential Equation:Analysis and Computation, 2015, 3(3):360-397[9] Dalang R. Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDE's. Electron J Probab, 1999, 4(6):1-29[10] Debbi L. On some properties of a high order fractional differential operatorwhich is not in general selfadjoint. Appl Math Sci, 2007, 1:1325-1339[11] Debbi L, Dozzi M. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch Proc Appl, 2005, 115:1761-1781[12] Hu Y, Nualart D. Stochastic heat equation driven by fractional noise and local time. Probab Theory Related Fields, 2009, 143:285-328[13] Jiang Y, Wei T, Zhou X. Stochastic generalized Burgers equations driven by fractional noises. J Differ Equ, 2012, 252:1934-1961[14] Komatsu T. On the martingale problem for generators of stable processes with perturbations. Osaka J Math, 1984, 21:113-132[15] Liu J, Yan L, Cang Y. On a jump-type stochastic fractional partial differential equation with fractional noises. Nonlinear Anal, 2012, 75:6060-6070[16] Liu J, Yan L. On a semilinear stochastic partial differential equation with double-parameter fractional noises. Sci China Math, 2014, 57(4):855-872[17] Liu J, Yan L. Solving a nonlinear fractional stochastic partial differential equation with fractional noise. J Theor Probab, 2016, 29:307-347[18] Liu J, Tudor C A. Analysis of the density of the solution to a semilinear SPDE with fractional noise. Stochastics, 2016, 88(7):959-979[19] Nourdin I, Viens F G. Density formula and concentration inequalities with Malliavin calculus. Electron J Probab, 2009, 14:2287-2309[20] Nualart D. The Malliavin Calculus and Related Topics. 2nd ed. Berlin:Springer, 2006[21] Nualart D, Quer-Sardanyons L. Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal, 2007, 27:281-299[22] Nualart D, Quer-Sardanyons L. Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations. Stochastic Process Appl, 2009, 119:3914-3938[23] Nualart D, Quer-Sardanyons L. Optimal Gaussian density estimates for a class of stochastic equations with additive noise. Infin Dimens Anal, Quantum Probab Relat Top, 2011, 14:25-34[24] Shi K, Wang Y. On a stochastic fractional partial differential equation with a fractional noise. Stochastics, 2012, 84(1):21-36[25] Walsh J B. An introduction to stochastic partial differential equations//Ecole d'été de Probabilités de St. Flour XIV. Lect Notes in Math 1180. Berlin:Springer-Verlag, 1986:266-439 |
[1] | Yuecai HAN, Yifang SUN. SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 681-694. |
[2] | Guangjun SHEN, Xiuwei YIN, Litan YAN. ERRATUM TO:LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1173-1176. |
[3] | Jing CUI, Litan YAN. CONTROLLABILITY OF NEUTRAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 2017, 37(1): 108-118. |
[4] | Guangjun SHEN, Xiuwei YIN, Litan YAN. LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 2016, 36(2): 394-408. |
[5] | SHEN Guang-Jun, YAN Li-Tan, LIU Jun-Feng. POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION [J]. Acta mathematica scientia,Series B, 2013, 33(4): 901-912. |
[6] | SHEN Guang-Jun, CHEN Chao, YAN Li-Tan. REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1860-1876. |
[7] | HU Yao-Zhong, Nualart David, XIAO Wei-Lin, ZHANG Wei-Guo. EXACT MAXIMUM LIKELIHOOD ESTIMATOR FOR DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATION [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1851-1859. |
[8] | WANG Bao-Bin. CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2 [J]. Acta mathematica scientia,Series B, 2011, 31(5): 1694-1708. |
[9] | GUO Bai-Ling, GUO Chun-Xiao, PU Xua-Ke. RANDOM ATTRACTORS FOR A STOCHASTIC HYDRODYNAMICAL EQUATION IN HEISENBERG PARAMAGNET [J]. Acta mathematica scientia,Series B, 2011, 31(2): 529-540. |
[10] | REN Jian, FU Hong-Bo, CAO Dao-Min, DUAN Jin-Qiao. EFFECTIVE DYNAMICS OF A COUPLED MICROSCOPIC-MACROSCOPIC STOCHASTIC SYSTEM [J]. Acta mathematica scientia,Series B, 2010, 30(6): 2064-2076. |
[11] | HU Yao-Zhong, WANG Bao-Bin. CONVERGENCE RATE OF AN APPROXIMATION TO MULTIPLE INTEGRAL OF FBM [J]. Acta mathematica scientia,Series B, 2010, 30(3): 975-992. |
[12] | Lin Zhengyan; Li Degui. STRONG APPROXIMATION FOR MOVING AVERAGE PROCESSES UNDER DEPENDENCE ASSUMPTIONS [J]. Acta mathematica scientia,Series B, 2008, 28(1): 217-224. |
[13] | LIU Ji-Cheng. D∞-APPROXIMATION OF PRODUCT VARIATIONS OF TWO PARAMETER SMOOTH SEMIMARTINGALES [J]. Acta mathematica scientia,Series B, 2004, 24(2): 235-246. |
[14] | Zhang Lixin. A LIMINF RESULT FOR HANSON-RUSSO TYPE INCREMENTS OF FRACTIONAL BROWNIAN MOTION [J]. Acta mathematica scientia,Series B, 1997, 17(2): 190-197. |
|