[1] Toda M. Vibration of a chain with nonlinear interaction. J Phys Soc Jpn, 1967, 22:431-436 [2] Toda M. Nonlinear Waves and Solitons. Dordrecht, Holland:Kluwer Academic Publishers, 1989 [3] Ueno K, Takasaki K. Toda lattice hierarchy//Group Representations and Systems of Differential Equations (Tokyo, 1982). Adv Stud Pure Math, 4. Amsterdam:North-Holland, 1984:1-95 [4] Witten E. Two-dimensional gravity and intersection theory on moduli space. Surveys Differ Geom, 1991, 1:243-310 [5] Dubrovin B A. Geometry of 2D topological field theories//Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Math, 1620. Berlin:Springer, 1996:120-348 [6] Carlet G, Dubrovin B, Zhang Y. The extended Toda hierarchy. Moscow Math J, 2004, 4:313-332 [7] Carlet G. The extended bigraded Toda hierarchy. J Phys A, 2006, 39:9411-9435 [8] Li C Z, He J S, Wu K, Cheng Y. Tau function and Hirota bilinear equations for the extended bigraded Toda Hierarchy. J Math Phys, 2010, 51:043514 [9] Li C Z. Solutions of bigraded Toda hierarchy. J Phys A, 2011, 44:255201 [10] Li C Z, He J S. Dispersionless bigraded Toda hierarchy and its additional symmetry. Reviews Math Phys, 2012, 24:1230003 [11] Li C Z, He J S, Su Y C. Block type symmetry of bigraded Toda hierarchy. J Math Phys, 2012, 53:013517 [12] Li C Z, He J S, The extended ZN-Toda hierarchy. Theor Math Phys, 2015, 185:1614-1635 [13] Meng A, Li C Z, Huang S. Integrability on generalized q-Toda equation and hierarchy. J Nonlinear Math Phys, 2014, 21:429-441 [14] Li C Z, Sato theory on the q-Toda hierarchy and its extension. Chaos Solitons Fract, 2015, 76:10-23 [15] Kac V G, van de Leur J W. The n-component KP hierarchy and representation theory. J Math Phys, 2003, 44:3245 [16] Mas J, Seco M. The algebra of q-pseudodifferential symbols and the q-WKP(n) algebra. J Math Phys, 1996, 37:6510-6529 [17] Tu M H. q-deformed KP hierarchy:its additional symmetries and infinitesimal Bäcklund transformations. Lett Math Phys, 1999, 49:95-103 [18] Lin R, Liu X, Zeng Y. A new extended q-deformed KP hierarchy. J Nonlinear Math Phys, 2008, 15:333-347 [19] Iliev P, Tau function solutions to a q-deformation of the KP hierarchy. Lett Math Phys, 1998, 44:187-200 [20] He J S, Li Y H, Cheng Y. q-deformed KP hierarchy and q-deformed constrained KP hierarchy. SIGMA, 2006, 2:060 [21] Tian K L, He J S, Su Y C, Cheng Y. String equations of the q-KP hierarchy. Chin Ann Math, Series B, 2011, 32:895-904 [22] Li C Z, Li T T. Virasoro symmetry of the (r, m)-component q-constrained KP hierarchy. submitted [23] Tsuboi Z, Kuniba A. Solutions of a discretized Toda field equation for Dr from analytic Bethe ansatz. J Phys A, 1996, 29:7785-7796 [24] Silindir B. Soliton solutions of q-Toda lattice by Hirota direct method. Adv Differ Equ, 2012, 2012:121 [25] Sato M. Soliton Equations as Dynamical Systems on a Infinite Dimensional Grassmann Manifolds. RIMS Kokyuroku, 1982, 439:30-46 |