[1] Bieberbach L. Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten. SB Preuss Akad Wiss, 1916 [2] Bhowmik B, Ponnusamy S, Wirths K J. On the Fekete-Szegö problem for concave univalent functions. J Math Anal Appl, 2011, 373:432-438 [3] Cartan H. Sur la possibilité d'étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes//Montel P. Lecons sur les Fonctions Univalentes ou Multivalentes. Paris:Gauthier-Villars, 1933 [4] de Branges L. A proof of the Bieberbach conjecture. Acta Math, 1985, 154(1/2):137-152 [5] Fekete M, Szegö G. Eine Bemerkunguber ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8:85-89 [6] Gong S. The Bieberbach Conjecture. Providence, RI:Amer Math Soc, International Press, 1999 [7] Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canadian J Math, 2002, 54:324-351 [8] Graham I, Kohr G, Kohr M. Loewner chains and parametric representation in several complex variables. J Math Anal Appl, 2003, 281:425-48 [9] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York:Marcel Dekker, 2003 [10] Hamada H, Kohr G, Liczberski P. Starlike mappings of order α on the unit ball in complex Banach spaces. Glas Mat Ser, 2001, 36(3):39-48 [11] Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317:302-319 [12] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin Ann Math, 2008, 29B(4):353-368 [13] Kohr G. Certain partial differential inequalities and applications for holomorphic mappings defined on the unit ball of Cn. Ann Univ Mariae Curie Skl, Sect A, 1996, 50:87-94 [14] Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in Cn. Complex Variables, 1998, 36:261-284 [15] Kanas S. An unified approach to the Fekete-Szegö problem. Appl Math Comput, 2012, 218:8453-8461 [16] Koepf W. On the Fekete-Szegö problem for close-to-convex functions. Proc Am Math Soc, 1987, 101:89-95 [17] Keogh F R, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Am Math Soc, 1969, 20:8-12 [18] London P R. Fekete-Szegö inequalities for close-to-convex functions. Proc Am Math Soc, 1993, 117(4):947-950 [19] Liu T S, Ren G B. The growth theorem for starlike mappings on bounded starlike circular domains. Chin Ann of Math, 1998, 19B:401-408 [20] Liu H, Lu K P. Two subclasses of starlike mappings in several complex variables. Chin Ann Math Ser A, 2000, 21(5):533-546 [21] Liu X S, Liu T S. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in Cn. Chin Ann Math, 2011, 32B:241-252 [22] Pfluger A. The Fekete-Szegö inequality for complex parameter. Complex Var Theory Appl, 1986, 7:149-160 [23] Xu Q H, Liu T S. On coefficient estimates for a class of holomorphic mappings. Sci China Ser A-Math, 2009, 52:677-686 [24] Xu Q H, Liu T S. Biholomorphic mappings on bounded starlike circular domain. J Math Anal Appl, 2010, 366:153-163 [25] Xu Q H, Liu T S, Liu X S. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389:781-791 |