[1] Ozawa T, Tsutaya K, Tsutsumi Y. Normal form and global solutions for the Klein-Gordon-Zakharov equations. Ann Inst Henri Poincaré Analyse non linéaire, 1995, 12:459-503
[2] Tsutaya K. Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations. Nonlinear Anal, 1996, 27(12):1373-1380
[3] Ionescu A D, Kenig C E, Tataru D. Global well-posedness of the KP-I initial-value problem in the energy space. Invent Math, 2008, 173(2):265-304
[4] Dendy R O. Plasma Dynamics. Oxford:Oxford University Press, 1990
[5] Zakharov V E. Collapse of Langmuir waves. Sov Phys JETP, 1972, 35:908-914
[6] Ozawa T, Tsutaya K, Tsutsumi Y. Well-posedness in energy space for the Cauchy problem of the KleinGordon-Zakharov equations with different propagation speeds in three space dimensions. Math Ann, 1999, 313:127-140
[7] Bourgain J, Colliander J. On well-posedness of the Zakharov system. Int Math Res Not, 1996, 11:515-546
[8] Bourgain J. Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I:Schrödinger equations, part Ⅱ:the KdV equation. Geom Funct Anal, 1993, 3:107-156; 209-262
[9] Kenig C E, Ponce G, Vega L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math J, 1993, 71:1-21
[10] Kenig C E, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J Amer Math Soc, 1996, 9:573-603
[11] Ionescu A D, Kenig C E. Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J Amer Math Soc, 2007, 20(3):753-798
[12] Tao T. Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equation. Amer J Math, 2001, 123:839-908 |