[1] Srivastava H M, Xu Q H, Wu G P. Coefficient estimates for certain subclasses of spiral-like functions of complex order. Appl Math Lett, 2010, 23: 763–768
[2] Xu Q H, Lv C B, Srivastava H M. Coefficient estimates for the inverses of a certain general class of spirallike functions. Appl Math Comput, 2013, 219: 7000–7011
[3] Pavlovi´c M. A Schwarz lemma for the modulus of a vector-valued analytic function. Proc Amer Math Soc,
2011, 139(3): 969–973
[4] Ruscheweyh S. Two remarks on bounded analytic functions. Serdica, 1985, 11: 200–202
[5] Avkhadiev F G, Wirths K J. Schwarz-Pick inequalities for derivatives of arbitrary order. Constr Approx,
2003, 19: 265–277
[6] Dai S Y, Pan Y F. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions.
Proc Amer Math Soc, 2008, 136: 635–640
[7] Liu Y, Chen Z H. Schwarz-Pick estimates for holomorphic mappings from the polydisk to the unit ball. J
Math Anal Appl, 2011, 376: 123–128
[8] Liu Y, Chen Z H. Schwarz-Pick estimates for positive real part holomorphic functions on unit ball and
polydisc. Science in China A, 2010, 53(4): 1017–1024
[9] Liu Y, Chen Z H. Schwarz-Pick estimates for bounded holomorphic functions on class domains. Acta Math
Sci, 2011, 31B(4): 1377–1382
[10] Dai S Y, Chen H H. Schwarz-Pick estimates for partial derivatives of arbitary order of bounded holomorphic
functions in the unit ball of Cn. Acta Math Sci, 2011, 31B(4): 1624–1632
[11] Anderson J M, Dritschel M, Rovnyak J. Schwarz-Pick inequalities for the Schur-Agler class on the polydisk
and unit ball. Comput Meth Funct Theory, 2008, 8: 339–361
[12] Dai S Y, Chen H H, Pan Y F. The Schwarz-Pick lemma of high order in several variables. Michigan Math
J, 2010, 59: 517–533
[13] Dai S Y, Pan Y F. A Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk
into the unit ball. Acta Math Sci, 2014, 34B(6): 1775–1780 |