[1] Agarwal R P, O’Regan D, Liu X. A Leray-Schauder alternatives for weakly strongly sequentially continuous weakly compact maps. Fixed point Theory and Applications, 2005, 1: 1–10
[2] Banas J, Chlebowicz A. On existence of integrable solutions of a functional integral equation under Carath´eodory conditions. Nonlinear Anal, 2009, 70: 3172–3179
[3] Ben Amar A. Nonlinear Leray-Schauder alternatives for decomposable operators in Dunford-Pettis spaces and application to nonlinear eigenvalue problems. Numer Funct Anal Optim, 2010, 31(11): 1213–1220
[4] Ben Amar A. Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell populations. Cent Eur J Math, 2011, 9(4): 851–865
[5] Ben Amar A, Garcia-Falset J. Fixed point theorems for 1-set weakly contractive and pseudocontractive operators on an unbounded domain. Portugal Math (NS), 2011, 68(2): 125–147
[6] De Blasi F S. On a property of the unit sphere in Banach space. Bull Math Soc Sci Math RS Roumanie, 1977, 21: 259–262
[7] Djebali S, Sahnoun Z. Nonlinear alternatives of Schauder and Krasnosel´skij types with applications to Hammerstein integral equations in L1 spaces. J Differential Equations, 2010, 249: 2061–2075
[8] Dunford N, Schwartz J T. Linear Operators: Part I. Intersciences, 1958
[9] Edwards R E. Functional Analysis, Theory and Applications. New York: Holt, Reinhart and Winston, 1965
[10] Emmanuele G. An existence theorem for Hammerstein integral equations. Port Math, 1994, 51: 607–611
[11] Garcia-Falset J. Existence of fixed points and measures of weak noncompactness. Nonlinear Anal, 2009, 71: 2625–2633
[12] Garcia-Falset J. Existence of fixed points for the sum of two operators. Math Nachr, 2010, 283(12): 1736–1757
[13] Gowda M S, Isac G. Operators of class (S)1+, Altman’s condition and the complementarity problem. J Fac Sci Univ Tokyo, Sect IA, Math, 1993, 40: 1–16
[14] James I M. Topological and Uniform Spaces. New York: Springer-Verlag, 1987
[15] Latrach K, Taoudi M A, Zeghal A. Some fixed point theorems of the Schauder and Krasnosel’skii type and
application to nonlinear transport equations. J Differential Equations, 2006, 221: 256–271
[16] Latrach K, Aziz Taoudi M. Existence results for generalized nonlinear Hammerstein equation on L1 spaces.
Nonlinear Anal, (2007), 66: 2325–2333
[17] Rothe E H. Zur Theorie der topologischen Ordunung und der Vektorfelder in Banachschen R¨aumen. Comp
Math, 1938, 5: 177–197
[18] Schaefer H H. Topological Vector Spaces. New York: Macmillan Company, 1966
[19] Zeidler E. Nonlinear functional analysis and its applications. Vol I. New York: Springer, 1986 |