[1] Bedford E, Taylor B A. A new capacity for plurisubharmonic functions. Acta Math, 1982, 149: 1–40
[2] Bedford E, Taylor B A. Fine topology, Silov boundary and (ddc)n. J Funct Anal, 1987, 72: 225–251
[3] Ben Messaoud H, El Mir H. Tranchage et prolongement des courants positifs ferm´es. Math Ann, 1997, 307: 473–487
[4] Ben Messaoud H, El Mir H. Op´erateur de Monge-Amp`ere et Tranchage des Courants Positifs Ferm´es. J Geom Anal, 2000, 10: 139–168
[5] Cegrell U. Discontinuit´e de l’op´erateur de Monge-Amp`ere complexe. CRAS, Paris S´erie I Math, 1983, 296: 869–871
[6] Dabbek K, Elkhadhra F. Capacit´e associ´ee `a un courant positif ferm´e. Documenta Math, 2006, 11: 469–486
[7] Demailly J -P. Complex analytic and differential geometry. available at: http://www-fourier.ujf-grenoble.fr, 1997
[8] Kiselman C O. Sur la d´efinition de l’op´erateur de Monge-Amp`ere complexe. Lecteures Notes, 1094. Toulouse, 1983: 139–150
[9] Xing Y. Complex Monge-Amp`ere measures of plurisubharmonic functions with bounded values near the boundary. Canad J Math, 2000, 52(5): 1085–1100
[10] Xing Y. Convergence in capacity. Ann Inst Fourier, 2008, 58: 1838–1861
[11] Xing Y. Weak convergence of currents. Math Z, 2008, 260: 253–264 |