[1] Berger M, Mizel V. Volterra equations with Itˆo integrals. I and II J Int Equations, 1980, 2: 187–245, 319–337
[2] Øksendal B, Zhang T S. The stochastic Volterra equations//Nualart D, Sanz-Sol´e M. The Barcelona Seminar on Stochastic Analysis. Basel: Birkh¨auser, 1993
[3] Pardoux E, Protter P. Stochastic Volterra equations with anticipating coefficients. Ann Probab, 1990, 18: 1635–1655
[4] Protter P. Volterra equations driven by semimartingales. Ann Probab, 1985, 13: 519–530
[5] Rodkina A E. Stochastic Volterra integral equations. Izv Akad Nauk Respub Moldova Mat, 1992, 93(3): 9-15
[6] Cochran W G, Lee J S, Potthoff J. Stochastic volterra equations with singular kernels. Stochastic Process Appl, 1995, 56(2): 337–349
[7] Coutin L, Decreusefond L. Stochastic Volterra equations with singular kernels. Stochastic Analysis and Mathematical Physics//Progr Probab. Vol 50. Boston: Birkhauser Boston, MA, 2001: 39–50
[8] Decreusefond L. Regularity properties of some stochastic Volterra integrals with sigular kernel. Potential Anal, 2002, 16: 139–149
[9] Zhang X C. Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J Differential Equations, 2008, 224: 2226–2250
[10] Chen Z L. Intersections and polar functions of fractional brownian sheets. Acta Mathematica Scientia, 2008, 28B(4): 779–796
[11] Chen Z L, Li H Q. Polar sets of multiparameter bifractional Brownian sheets. Acta Mathematica Scientia, 2010, 30B(3): 857–872
[12] Hu Y Z, Nualart D, Song J. Feynman-Kac formula for heat equation driven by fractional white noise. Ann Probab, 2011, 39(1): 291–326
[13] Xiao Y M, Zhang T S. Local times of fractional Brownian sheets. Probab Theory Relat Fields, 2002, 124: 204–226
[14] Cairoli R, Walsh J B. Stochastic integrals in the plane. Acta Math, 1975, 134: 111–183
[15] Hajek B. Stochastic equations of hyperbolic type and a two-parameter Stratonovich calculus. Ann Probab, 1982, 10, 451–463
[16] Nualart D, Sanz M. Stochastic differential equations on the plane: smooth of the solution. J Multivariate Anal, 1989, 31(1): 1–29
[17] Reid J. Estimate on moments of the solutions to stochastic differential equations in the plane. Ann Probab, 1983, 11: 656–668
[18] Ren J G, Zhang X C. Quasi-sure analysis of two-parameter stochastic differential equations. Stoch Stoch Rep, 2002, 72(3/4): 251–276
[19] Wong E, Zakai M. Weak martingales and stochastic integrals in the plane. Ann Probab, 1974, 4: 570–586
[20] Yeh J. Existence of the strong solutions for the stochastic differential equations in the plane. Pac J Math, 1981, 97: 217–247
[21] Yeh J. Existence of weak solutions to stochastic differential equations in the plane with continuous coefficiens. Tran Amer Math Soc, 1985, 290(1): 345–361
[22] Yeh J. Uniqueness of strong solutions to stochastic differential equations in the plane with deterministic boundary process. Pac J Math, 1987, 128(2): 391–400
[23] Zhang X C, Zhou S P. Stratonovich anticipative stochastic differential equations in the plane. Stoch Stoch Rep, 2000, 69: 105–121
[24] Djehiche B, Eddahbi M. Large deviations for a stochastic Volterra-type equation in the Besov-Orlicz space. Stochastic Process Appl, 1999, 81: 39–72
[25] Rovira C, Sanz-Sol´o M. Large deviations for stochastic Volterra equations in the Plane. Potential Anal, 2000, 12: 359–383
[26] Kolodii N A. Two-parameter stochastic Volterra equations. Mathematical Notes, 2009, 86(3/4): 493–504
[27] Rovira C, Sanz-Sol´o M. Stochastic Volterra equations in the plane: smoothness of the law. Stocha Anal Appl, 2001, 9(6): 983–1004
[28] Zhang X C, Zhu J Y. Non-Lipschitz stochastic differential equations driven by multi-parameter Brownian motions. Stoch Dyna, 2006, 6(3): 329-340
[29] Adams R A, Fournier J J F. Sobolev spaces. Second Edition. Amsterdam: Academic Press, 2003
[30] Kallenberg O. Foundations of Modern Probability. 2nd ed. Berlin: Springer, 2002 |