[1] Armitage D H. Normal limits, half-spherical means and boundary measures of half-space Poisson integrals. Hiroshima Math J, 1981, 11: 235–246
[2] Doob J L. Measure Theory. New York: Springer-Verlag, 1994
[3] Falconer K J. The Geometry of Fractal Set. Cambridge: Cambridge Univ, 1985
[4] Falconer K J. Techniques in Fractal Geometry. Chichester: John Wiley & Sons, 1997
[5] Rogers C A, Taylor S J. Functions continuous and singular with respect to a Hausdorff measure. Mathe-matika, 1961, 8(15): 1–31
[6] Rudin W. Real and Complex Analysis. New York: McGraw-Hill, 1970
[7] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univer-sity, 1970
[8] Su X F, Zhang Y P. Integrability near the boundary of the Poisson integral of some singular measures. Wuhan Univ J Nat Sci, 2007, 12(3): 395–401
[9] Watson N A. Differentiation of measures and initial values of temperatures. J London Math Soc, 1977, 16(2): 271–282
[10] Watson N A. Initial singularities of Gauss-Weierstrass integrals and their relations to Laplace transforms and Hausdorff measures. J London Math Soc, 1980, 21(2): 336–350
[11] Wen S Y, Wu M. Relations between packing premeasure and measure on metric space. Acta Math Sci, 2007, 27B(1): 137–144
[12] Wen Z Y, Zhang Y P. Singular boundary properties of harmonic functions and fractal analysis. Chin Ann Math Ser B, 1997, 18(3): 337–344
[13] Wen Z Y, Zhang Y P. Some boundary fractal properties of the convolution transform of measures by an approximate identity. Acta Math Sin (Engl Ser), 1999, 15(2): 207–215 |