Acta mathematica scientia,Series B ›› 2012, Vol. 32 ›› Issue (6): 2065-2084.doi: 10.1016/S0252-9602(12)60160-X
• Articles • Next Articles
Joe S. Wang
Received:
Online:
Published:
Abstract:
We give a local analytic characterization that a minimal surface in the 3-sphere S3 ( R4 defined by an irreducible cubic polynomial is one of the Lawson´s minimal tori. This provides an alternative proof of the result by Perdomo (Characterization of order 3 algebraic immersed minimal surfaces of S3, Geom. Dedicata 129 (2007), 23–34).
Key words: algebraic minimal surface, 3-sphere, cubic polynomial
CLC Number:
Joe S. Wang. DEGREE 3 ALGEBRAIC MINIMAL SURFACES IN THE 3-SPHERE[J].Acta mathematica scientia,Series B, 2012, 32(6): 2065-2084.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(12)60160-X
http://121.43.60.238/sxwlxbB/EN/Y2012/V32/I6/2065
[1] Hsiang Wu-yi. Remarks on closed minimal submanifolds in the standard Riemannian m-sphere. J Differ-ential Geometry, 1967, 1: 257–267 [2] Hsiang Wu-yi, Lawson B. Minimal submanifolds of low cohomogeneity. J Differential Geometry, 1971, 5: 1–38 [3] Lawson B. Complete minimal surfaces in S3. Ann Math, 1970, 92(2): 335–374 [4] Perdomo O M. Characterization of order 3 algebraic immersed minimal surfaces of S3. Geom Dedicata, 2007, 129: 23–34 [5] Yamada K. Minimal tori in S3 whose lines of curvature lie in S2. Tokyo J Math, 1987, 10: 215–226
Cited