[1] Bettaibi N, Bettaieb R H. q-analogue of the Dunkl transform on the real line. Tamsui Oxford J Mathe-matical Sciences, 2009, 25(2): 178–206
[2] Bouzeffour F. q-Harmonic Analysis [D]. Tunisia: Facult´e des Sciences de Tunis, 2002
[3] Fitouhi A, Moncef Hamza M, Bouzeffour F. The q-j Bessel function. J Appr Thory, 2002, 115: 144–166
[4] Fitouhi A, Bettaibi N, Binous W. Inversions formulas for the q-Rieamann-Liouville and q-Weyl transforms using wavelets. Frac Calc Appl Anal, 2007, 10(4): 327–342
[5] Gasper G, Rahmen M. Basic Hypergeometric Series. 2nd ed. Encyclopedia of Mathematics and Its Application, 96. Cambridge, UK: Cambridge Univ Press, 2004
[6] Kac V G, Cheung P. Quantum Calculs. New York: Springer-Verlag, 2002
[7] Koornwinder T H, Swarttouw R F. On q-analogues of the Hankel and Fourier transform. Trans Amer Math Soc, 1992, 333: 445–461
[8] Rubin R L. A q2-analogue operator for q2-analogue Fourier analysis. J Math Analy App, 1997, 212: 571–582
[9] Rubin R L. Duhamel solutions of non-homogenous q2-analogue wave equations. Proc of Amer Math Soc, 2007, 135(3): 777–785
[10] Ryde F. A Contribution to the Theory of Linear Homogeneous Geometric Difference Equations (q-difference equations). Lund: Dissertation, 1921
[11] Sadosky C. Interpolation of Operators and Singular Integrals: An Introduction to Harmonic Aanalysis. Monographs and Textbooks in Pure and Applied Mathematics. New York: Marcel Dekker Inc, 1979 |