Acta mathematica scientia,Series B ›› 2011, Vol. 31 ›› Issue (4): 1613-1623.doi: 10.1016/S0252-9602(11)60347-0
• Articles • Previous Articles Next Articles
FANG Jie, WANG Lei-Bo
Received:
Revised:
Online:
Published:
Abstract:
The variety ddpM of de Morgan algebras with double demi-pseudocomplem-entation consists of those algebras (L;∧,∨,? ,* ,+ , 0, 1) of type (2, 2, 1, 1, 1, 0, 0) where (L; ∧,∨,? , 0, 1) is a de Morgan algebra, (L;∧,∨, *,+ , 0, 1) is a double demi-p-lattice and the operations x → x?, x → x* and x → x+ are linked by the identities x*? = x?*, x+? = x?+ and x*+ = x+*. In this paper, we characterize congruences on a ddpM-algebra, and give a description of the subdirectly irreducible algebras.
Key words: de Morgan algebra, double demi-pseudocomplemented algebra, subdirectly irreducible
CLC Number:
FANG Jie, WANG Lei-Bo. DE MORGAN ALGEBRAS WITH DOUBLE DEMI-PSEUDOCOMPLEMENTATION[J].Acta mathematica scientia,Series B, 2011, 31(4): 1613-1623.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(11)60347-0
http://121.43.60.238/sxwlxbB/EN/Y2011/V31/I4/1613
[1] Romanowska A. Subdirectly irreducible pseudocomplemented de Morgan algebras. Algebra Universalis, 1981, 12: 70–75 [2] Sankappanavar H P. Demi-pseudocomplemented lattices: Principal congruences and subdirectly irre-ducibility. Algebra Universalis, 1990, 27: 180–193 [3] Sankappanavar H P. Principal congruences of double demi-p-lattices. Algebra Universalis, 1990, 27: 248–253 [4] Blyth T S, Fang J. Ockham algebras with demi-pseudocomplementation. Communications in Algebra, 1999, 27(11): 5413–5422 [5] Blyth T S, Varlet J C. Ockham Algebras. Oxford: Oxford University Press, 1994 [6] SankappanavarH P. Semi-De Morgan algebras. J Symbolic Logic, 1987, 52: 712–724 [7] Luo C W. A special kind of principal congruence on MS algebras and its application. Acta Math Sci, 2008, 28B(2): 315–320
Cited