[1] Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Berlin, New York: Springer-Verlag, 1975
[2] Viana M. Stochastic Dynamics of Deterministic Systems. Lecture Notes XXI Braz Math Colloq, IMPA: Rio de Janeiro, 1997
[3] Gouëzel S. Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. Annales de l'IHP Probabilités et
Statistiques, 2005, 6: 997--1024
[4] Young L S. Statistical properties of dynamical systems with some hyperbolicity. Ann Math, 1998, 2: 585--650
[5] Xia H. Local central limit theorem and Berry-Essen theorem for some non-uniformly hyperbolic diffeomorphisms. Acta Mathematica Scientia, 2010, 30(3): 701--712
[6] Dolgopyat D. Limit theorems for partially hyperbolic systems. Trans Amer Math Soc, 2004, 4: 1637--1689
[7] Melbourne I, Nicol M. Almost sure invariant principle for nonuniformly hyperbolic systems. Comm Math Phys, 2005, 1: 131--146
[8] Liverani C. Central limit theorem for deterministic systems//Ledrappier F, Lewowicz J, Newhouse S, eds. International Conference on Dynamical Systems Pitman Research Notes in Math 362. Harlow: Longman Group Ltd, 1996: 56--75
[9] Hennion H, Herv\'e L. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness.
Lecture Notes in Math, New York: Springer, 2001
[10] Fan A, Jiang Y. Spectral theory of transfer operators//Jiang Y, Wang Y. Complex Dynamics and Related Topics. New Studies in Advanced Mathematics, Vol 5. International Press, 2004: 63--128
[11] Melbourne I, Nicol M. A vector-valued almost sure invariant principle for hyperbolic dynamical systems. Ann Probab, 2009, 2: 478--505
[12] Xia H, Zhang Z. Multidimensional central limit theorem with speed of convergence for uniformly expanding maps. Journal of
Huazhong Normal University, 2008, 3: 323--327
[13] Pène F. Rate of convergence in the multidimensional central limit theorem for stationary processes. Application to the Knudsen and to the Sinai billiard. Ann Appl Probab, 2005, 4: 2331--2392
[14] Walters P. An Introduction to Ergodic Theory. New York: Springer Verlag, 1982
[15] Parry W, Pollicott M. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Ast\'erisque, 1990: 187--188
[16] Zinsmeister M. Thermodynamic Formalism and Holomorphic Dynamical Systems. SMF/AMS Texts and Monographs, Vol. 2, Providence RI: American Mathematical Society, 2000
[17] Dudley M. Real Analysis and Probability. Wadsworth and Brooks Cole, CA: Pacific Grove, 1989
[18] Yurinskii V. A smoothing inequality for estimates of the Levy-Prokhorov distance. Theory Probab Appl, 1975, 1: 1--10 |