[1] Arendt W, Bu S. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math Z, 2002, 240: 311--343
[2] Arendt W, Bu S. Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc Edinb Math Soc, 2004, 47: 15--33
[3] Arendt W, Batty C, Bu S. Fourier multipliers for H\"older continuous functions and maximal regularity. Studia Math, 2004, 160: 23--51
[4] Brèzis H. Analyse Fonctionnelle. Paris: Masson, 1983
[5] Bu S, Kim J. Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math Sinica, English Series, 2005, 21(5): 1049--1056
[6] Bu S, Fang Y. Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Mathematica, 2008, 184(2): 103--1119
[7] Chill R, Srivastava S. Lp-maximal regularity for second order Cauchy problems. Math Z, 2005, 251: 751--781
[8] Clèment Ph, Da Prato G. Existence and regularity results for an integral equation with infinite delay in a Banach space. Int Equ Ope The, 1988, 11: 480--550
[9] Da Prato G, Lunardi A. Solvability on the real line of a class of linear Volterra integro-differential equations of parabolic type. Ann Mat Pura Appl, 1988, 150(4): 67--117
[10] Keyantuo V, Lizama C. H\"older continuous solutions for integro-differential equations and maximal regularity. J Differ Equ, 2006, 230: 634--660
[11] Keyantuo V, Lizama C. Fourier multipliers and integro-differential equations in Banach spaces. J London Math Soc, 2004, 69(2): 737--750
[12] Keyantuo V, Lizama C. Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces. Studia Math, 2005, 168(1): 25--50
[13] Lunardi A. The heat equation with fading memory. SIAM J Math Anal, 1990, 21: 1213--1224
[14] Weis L. Operator-valued Fourier multipliers and maximal Lp-regularity. Math Ann, 2001, 319: 735--758
[15] Weis L. A new approach to maximal Lp-regularity//Evolution Equations and Their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl Math 215. New York: Dekker, 2001: 195--214 |