[1] Baillon J B. Un theorem de type ergodique pour les contractions non lineaires dans un espace de Hilbert. C R Acad Sci Paris Ser A--B,
1975, 280: 1511--1514
[2]}Wittmann R. Approximation of fixed points of nonexpansive mappings. Arch Math, 1992, 58: 486--491
[3]Halpern B. Fixed points of nonexpanding maps. Bull Amer Math Soc, 1967, 73: 957--961
[4]Reich S. Some problems and results in fixed point theory. Contemp Math, 1983, 21: 179--187
[5]Shimizu T. Takahashi W. Strong convergence to common fixed point of families of nonexpansive mappings. J Math Anal Appl, 1997, 211: 71--83
[6] Yao Y, Chen R. Convergence to common fixed points of averaged mappings without commutativity assumption in Hilbert spaces.
Nonlinear Analysis, 2007, 67: 1758--1763
[7] Moudafi A. Viscosity aproximation methods for fixed-point problems. J Math Anal Appl, 2000, 241: 46--55
[8] Yao Y, Noor M A. On viscosity iterative methods for variational inequalities.J Math Anal Appl, 2007, 325: 776--787
[9] Osilike M O, Igbokwe D I. Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations. Com Math Appl, 2000, 40: 559--567
[10]Plubtieng S, Punpaeng R. Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces. Mathematical and Computer Modelling, 2008, 48: 279--286
[11] Plubtieng S, Wangkeeree R. A general viscosity approximation method of fixed point solutions of variational inequalities for
nonexpansive semigroups in Hilbert spaces. Bulletin of the Korean Mathematical Society, 2008, 45: 717--728
[12]Plubtieng S, Sriprad W. A viscosity approximation method for finding a common solutions of variational inclusions, equilibrium problems and fixed point problems in Hilbert spaces. Fixed Point Theory and Applications, 2009, Article ID 567147, doi:10.1155/2009/567147
[13]Plubtieng S, Thammathiwat T. A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities. Journal of Global Optimization, 2010, 46: 447--464
[14] Plubtieng S, Thammathiwat T. A viscosity approximation method for finding a common solution of fixed points and equilibrium problems in Hilbert spaces. Journal of Global Optimization, 2010, doi 10.1007/s10898-010-9583-z
[15] Xu H K. Viscosity approximation methods for nonexpansive mappings. J Math Anal Appl, 2004, 298: 279--291
[16]Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J Math Anal Appl, 2005, 305: 227--239
[17] Takahashi W. Nonlinear Functional Analysis. Japan: Yokohama Publishers, 2000
[18] Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces.
J Math Anal Appl, 2007, 331: 506--515
[19] Xu H K. Iterative algolithms for nonlinear operations. J London Math Soc, 2002, 66: 240--256
[20]Xu H K. An iterative approach to quadratic optimization. J Optim Theory Appl, 2003, 116: 659--678
[21]Yao Y, Yao J C. On modified iterative method for nonexpansive mappings. Appl Math Comput, 2007, 186: 1551--1558 |