[1] Ashbaugh M S. Isoperimetric and universal inequalities for eigenvalues//Davies E B, Safalov Yu. Spectral Theory and Geometry. Vol. 273. Edinburgh: London Math Soc Lecture Notes, 1999: 95--139
[2] Chen Z C, Qian C L. Estimates for discrete spectrum of Laplacian opetator with any order. J China Univ Sci Tech, 1990, 20: 259--266
[3] Yang H C. An estimate of the difference between consecutive eigenvalues. preprint IC/91/60 of ICTP, Trieste, 1991
[4] Cheng Q M, Yang H C. Inequalities for eigenvalues of a clamped plate problem. Trans Amer Math Soc, 2006, 358(6): 2625--2635
[5] Gilkey P B. The spectral geometry of the higher order Laplacian. Duke Math J, 1980, 47(3): 511--528
[6] Gray A, Willmore T. Mean-value theorems for Riemannian manifolds. Proc Roy Soc Edinburgh, sect A, 1982, 92: 343--360
[7] Gu Y G. The eigenvalue problems of elliptic equations of higher order. Acta Mathematics Scientia, 1991, 11B: 361--367
[8] Hile G N, Yeh R Z. Inequalities for eigenvalues of the biharmonic operator. Pacific J Math, 1984, 112: 115--133
[9] Hook S M. Domain independent upper bounds for eigenvalues of elliptic operator. Trans Amer Math Soc, 1990, 318: 615--642
[10] Huang G Y, Chen W Y. Inequalities of eigenvalues for bi-kohn Laplacian on Heisenberg group. Acta Math Sci, 2010, 30B: 125--131
[11] Huang G Y, Ma B Q. Estimates on eigenvalues on compact homogeneous Riemannian manifolds. J Henan Norm Univ Nat Sci, 2008, 36: 9--11
[12] Payne L E, Pòlya G, Weinberger H F. On the ratio of consecutive eigenvalues.J Math Phsys, 1956, 35: 289--298
[13] Wang Q L, Xia C Y. Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds. J Funct Anal, 2007, 245: 334--352
[14] Wu F E, Cao L F. Estimates for eigenvalues of Laplacian operator with any order. Sci in China, Ser A, 2007, 50: 1078--1086 |