[1]Alemida J R L, Thouless D T. Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J Phys A: math Gen II, 1978. 983-990
[2]Bovier A, Picco P. Mathematical aspects of spin glasses and neural networks. Boston, Basel Berlin:Brirkhauser, 1998
[3]Comets F. A spherical bound for the Sherrington-Kirkpatrick model. In: Neveu J, ed. Homage a P. -A.Meyer. Asterisque, 1996, 236: 103-108
[4]Ibragimor A, Sudakov V N, Tsirelson B S. Normas of Gaussian sample functions. Proceeding of the Third Japan USSR Symposium on Probability Theory. Lect Note Math 550. Springer-verlag, 1996. 20-41
[5]Ledoux M. Concentration of measure and logarithmic Sobolev inequaliticsw. Lectures, Berlin, Nov, 1997
[6]Pastur L, Shcherbina M. Absence of self-averaging of the order parameter in the Scherrington-Kirkpatrick Model. J Stat Phys, 1991,62: 1-19
[7]Talagrand M. The Sherrington-Kirkpatrick model, a challenge for mathematics. Prob Th Rel Fields, 1998,110: 109-176
[8]Talagrand M. Huge random structures and mean field models for spain glasses. Proceedings of the Inter-national Congress of Mathematicians. Berlin, August 1998, Vol. I.507-536
[9]Talagrand M. Verres de spin et optimization combinatoire seminarie Bowrabaki. Mars, 1999
[10]Talagrand M. Rigorous results for the Hop field model with many patterns. Prob Th Rel Fields, 1998,110: 177-276
|