[1]Clarke F H. Optimization and nonsmooth analysis. New York: Wiley-Interscience, 1983
[2]Shi S Z. Nonsmooth analysis. Advances in Mathematics, 1986,15(1):9-21 (in Chinese)
[3]Aubin J P, Frankowska H. Set-valued analysis. Boston: Birkhauser, 1990
[4]Aubin J P, Ekeland I. Applied nonlinear analysis. New York: John Wiley, 1984
[5]Luc D T. Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, 319.Springer-verlag, 1988
[6]Chen G Y, Jahn J. Optimality conditions for set-valued optimization problems. Math Meth Oper Res,1998,48:187-200
[7]Bector C R, Suneia S K, Latiha C S. Generalized B-vex functions and generalized B-vex programming. J of Optim Theory and Appl, 1993,76(3):561-576
[8]Bector C R, Singh C. B-vex functions. J of Optim Theory and Appl, 1991, 71(2):237-253
[9]Butzer P L, Nessel R J. Fourier analysis and approximation. New York: I Birkhauser Based and Academic Press, 1971
[10]Xie T F, Zhou S P. Approximation theory of real function. Hangzhou: Hangzhou Univ Publisher, 1998
[11]Su W Y. Gibbs-Butzer derivatives and their applications. Number Funct Anal and Optim, 1995,16(5/6):805-824
[12]Hu Y D. Efficiency theory of multiobjective programming. China: Shanghai Science and Technique Pub-lisher, 1994. 126-127
[13]Sawaragi Y, Nakayama H, Tanino T. Theory of multiobjective optimization. Academic Press, Inc
[14]Li Z F. Benson proper efficiency in the vector optimization of set-valued maps. J of Optim Theory and Appl, 1998,98(3):623-649
[15]Guo XM.Proximal-subdifferential of lower semicontinuous functions and generalized mean value theorems.Acta Mathematics Scientia,1998,18(3):324-329(in Chinese)
[16]Wang Q T,Wang X J, Tian Y X. Optimality conditions of cone efficient solution in multiobjective pro-gramming. Acta Mathematics Scientia, 1998,18(1):48-55(in Chinese)
|