1 Eisenhart L P. A Treatise in Differential Geometry of Curves and Surfaces. New York: Ginn Co, 1909
2 Chern S S, Terng C L. An analogue of B¨acklund theorem in affine geometry. Rocky Mountain J Math,
1980,10: 105-124
3 Hu H S. Soliton theory and differential geometry. In: Soliton Theory and its Applications. Springer, 1995.
297-336
4 Miura R M, et al. B¨acklund Transformation. Lecture notes in Mathematics, Vol 515. Springer, 1974
5 Tenenblat K, Terng C L. B¨acklund theorem for n-dimensional submainfolds of R2n−1. Ann Math,
1980,111: 477-490
6 Terng C L. A higher dimension generalization of sine-Gordon equation and its soliton theory. Ann Math,
1988,111: 491-510
7 Tian Chou, Cao Xifang. B¨acklund transformation on surfaces with aK+bH = c. Chin J of Contemporary
Mathematics, 1997,18: 353-364
8 Cao X F, Tian C. B¨acklund transformations on surfaces with (k1 −m)(k2 −m) = ±l2 in R2,1. J Phys A:
Math Gen, 1997,30: 6009-6020
9 Weigarten J. ¨Uber eine klasse anf einander abwickelberen Fl¨achen. J Reine Angew Math, 1861,59: 382-393
10 Wu H. Weingarten surfaces and nonlinear partial equations. Ann Glob Anal Geom, 1993,11: 49-64
11 Bollough R K, Caudrey P J. The soliton and its history. In: Bollough R K, Caudrey P J, ed. Soliton.
Springer-Verlag, 1980. 1-44 |