[1]Blumenthal R M, Getoor R K. Markov processes and potential theory. Academic Press, 1968
[2]Chen Mufa. From Markov Chains to Non-equilibrium Particle System. New York: World Scientific Press,1992
[3]Hu Dihe. The analysis theory of Markov processes with general state space. Wuhan: Hubei Educational Press, 1985
[4]Wang Zikun. Theory of stachastic processes. Beijing: Science press,1978
[5]Liu Luqin. The equilibrium problem and capacity for jump Markov processes. Acta Mathematica Scientia,1995, 15(1): 15-30
[6]Revuz D. Meaures Associees aux Fonctionelles Additive deMarkov I. Trans Amer Math Soc, 1970, 148:501-531
[7]Nevison C H. Potentials of Markov Processes without Duality. Ann of Probab, 1976, 4: 497-501
[8]Getoor R K, Sharpe M J. Naturality,Standardness and Weak Duality for Markov Processes. Z W 1984,67: 1-62
[9]Chen Mufa. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains.Stoch Proc Appl, 2000, 87: 281-297
[10]Chen Mufa. The principal eigenvalue for jump processes. Acta Math Sin Eng Ser, 2000, 16(3): 361-368
[11]Chen Mufa. Explicit criteria for several types of ergodicity. Chinese J Appl Prob Stat, 2001, 17(2):113-120
[12]Liu Luqin. Balayage Problem and Representation of Additive Functionals for jump Markov processes.Journal of Wuhan University (Natural Science Edition), 1993, 3: 9-15
[13]Chen Xia. Limit theorems for functionals of ergodic Markov chains with general state space. American Math Society, 1999, 139(664)
[14]Jiand Feng. Functional limit theorems for Markov processes. [Master Thesis]. Wuhan: Hubei University,2000
[15]Zhang H J, Lin X, Hou Z T. Uniformly polynomial convergence for standard transition funtions. Preprint(In Chinese), 1998
|