[1]Brack F, Delanghe R, Sommen F. Clifford Analysis. Research Notes in Mathematics 76. London Pitman Books Ltd, 1982
[2]Delanghe R. On regular analytic functions with values in a Clifford algebra. Math Ann, 1970, 185: 91-111
[3]Delanghe R. On the singularities of functions with values in a Clifford algebra. Math Ann, 1972, 196:293-319
[4]Bracks F, Pincket W. The biregular functions of Clifford Analysis, Some special topics, Clifford algebra and their applications in mathematical physics. NATO ASI Series C: Mathematical and physical sciences,183, 159-166
[5]Le Huangson. Cousin problem for biregular functions with values in a Clifford algebra. Complex Variables,1992, 20: 255-263
[6]Yeh R Z. Analysis and applications of holomorphic functions in higher dimensions. Trans Amer Math Soc,1994, 345: 151-177
[7]Yeh R Z. Hyperholomorphic functions and second order partial differential equations. Trans Amer Math Soc, 1991,325: 287-318
[8]Iftimie V. Functions hypercomplex. Bull Math de la Soc Sci Math de la R S R, 1965, 9(57): 279-332
[9]Huang Sha. A Nonlinear boundary value problem for biregular functions in Clifford analysis. Sci in China,1996, 39(1): 1152-1164
[10]Huang Sha. A nonlinear boundary value problem with Haseman shift in Clifford analysis. J Sys Sci & Math Scis (in Chinese), 1991, 11(4): 336-345
[11]Du Jinyuan, Zhang Zhongxiang. A Cauchy’s integral formula for functions with values in a universal Cliffford algebra and its applications. Complex Variables, 2002, 47(10): 915-928
[12]Vekua I N. Generalized analytic functions. Oxford: Pergamon Press, 1962
[13]Begehr H. Iterations of Pompeiu operators. Mem Differential Equations Math Phys, 1997, 12: 13-21
[14]Begehr H. Iterated integral operators in Clifford analysis. Journal for Analysis and its Applications,1999,18(2): 361-377
[15]Begehr H, Dai D Q, Li X. Integral representation formulas in polydomains. Complex Variables, 2002,47(6): 463-484
|